opt = config.get_arguments().parse_args() netG = Generator(opt) for param in netG.parameters(): param.requires_grad = False ckpt_dir = os.path.join(opt.checkpoints, opt.dataset, opt.attack_mode, 'target_' + str(opt.target_label)) ckpt_path = os.path.join(ckpt_dir, "{}_{}_ckpt.pth.tar".format(opt.attack_mode, opt.dataset)) state_dict = torch.load(ckpt_path) netG.to(opt.device) netG.eval() netG.load_state_dict(state_dict["netG"]) print(">=========================< load netG >==========================<") netM = Generator(opt, out_channels=1) netM.load_state_dict(state_dict["netM"]) print(">=========================< load netM >==========================<") netM.to(opt.device) netM.eval() netM.requires_grad_(False) test_dataloader = get_dataloader(opt, train=False, bd=False) inputs, targets = next(iter(test_dataloader)) inputs = inputs.to(opt.device) patterns = netG(inputs) patterns = netG.normalize_pattern(patterns) batch_masks = netM.threshold(netM(inputs)) bd_inputs = inputs + (patterns - inputs) * batch_masks bd_inputs = netG.denormalize_pattern(bd_inputs) * 255.0 bd_inputs = bd_inputs.detach().cpu().numpy() bd_inputs = np.clip(bd_inputs, 0, 255).astype(np.uint8).transpose((0, 2, 3, 1))怎么把这个bd_inputs的图片一张一张按PNG格式保存下来
时间: 2023-08-29 17:08:59 浏览: 200
你可以使用PIL库中的Image模块来保存bd_inputs的图像。以下是一个示例代码:
```python
from PIL import Image
# 保存bd_inputs中的每张图像
for i in range(len(bd_inputs)):
image = Image.fromarray(bd_inputs[i])
image.save(f"image_{i}.png")
```
这将保存每张图像为PNG格式,并以"image_0.png","image_1.png"等命名。你可以根据需要修改文件名或保存路径。
相关问题
etg, netd = NetG(opt), NetD(opt) map_location = lambda storage, loc: storage if opt.netd_path: print(opt.netd_path) netd.load_state_dict(t.load(opt.netd_path, map_location=map_location)) if opt.netg_path: netg.load_state_dict(t.load(opt.netg_path, map_location=map_location)) netd.to(device) netg.to(device) # 定义优化器和损失 optimizer_g = t.optim.Adam(netg.parameters(), opt.lr1, betas=(opt.beta1, 0.999)) optimizer_d = t.optim.Adam(netd.parameters(), opt.lr2, betas=(opt.beta1, 0.999)) criterion = t.nn.BCELoss().to(device) # 真图片label为1,假图片label为0 # noises为生成网络的输入 true_labels = t.ones(opt.batch_size).to(device) fake_labels = t.zeros(opt.batch_size).to(device) fix_noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device) noises = t.randn(opt.batch_size, opt.nz, 1, 1).to(device) errord_meter = AverageValueMeter() errorg_meter = AverageValueMeter() epochs = range(opt.max_epoch)的含义
这段代码是对生成对抗网络中的生成器和判别器进行初始化,并设置优化器、损失函数以及真实和虚假图片的标签等。
1. NetG和NetD是两个神经网络,分别代表生成器和判别器。通过传入opt参数,初始化两个网络,并在GPU或CPU上进行训练。
2. 如果opt.netd_path和opt.netg_path不为空,则加载之前训练好的网络参数。
3. 定义Adam优化器和二元交叉熵损失函数,并将它们移动到GPU或CPU上。
4. 定义真实和虚假图片的标签,以及用于生成网络的输入噪声。
5. 定义AverageValueMeter类的实例,用于计算每个epoch的平均损失值。
6. 定义训练的epoch数,用于控制训练的次数。
最终将这些参数和实例返回,用于后续的GAN训练。
阅读全文