用MATLAB实现以下功能:利用MCMC方法对期权的隐含波动率进行反演。首先给定期权的行权价、标的资产价格、到期时间以及波动率,生成一组模拟数据,同时假设抽样过程中的建议分步为高斯分布,然后再根据这组模拟数据对隐含波动率进行反演计算,并输出绝对误差随迭代次数的图像。同时再采用Euler逼近法和Talay逼近法,不断加细时间步长,输出随着时间步长数的增加,绝对误差的变化趋势。
时间: 2023-11-28 16:50:35 浏览: 44
计算期权杠杆率和隐含波动率
以下是MATLAB代码实现:
```matlab
% 定义期权参数
K = 100; % 行权价
S0 = 100; % 标的资产价格
T = 1; % 到期时间
sigma = 0.2; % 波动率
% 定义模拟数据生成函数
function res = simdata(K, S0, T, sigma, N)
dt = T / N;
t = 0:dt:T;
S = zeros(1, N+1);
S(1) = S0;
for i = 2:N+1
S(i) = S(i-1) * exp((r - 0.5*sigma^2)*dt + sigma*sqrt(dt)*randn());
end
res = max(S(N+1)-K, 0);
end
% 生成模拟数据
N = 100;
data = zeros(1, 10000);
for i = 1:10000
data(i) = simdata(K, S0, T, sigma, N);
end
% 定义隐含波动率反演函数
function res = impliedvol(K, S0, T, data, N, niter, delta)
dt = T / N;
t = 0:dt:T;
sigma0 = 0.1;
sigma = zeros(1, N+1);
sigma(1) = sigma0;
err = zeros(1, niter);
for i = 2:N+1
sigma(i) = sigma(i-1) + delta*randn();
end
for i = 1:niter
for j = 2:N+1
sigma_star = sigma(j-1) + delta*randn();
alpha = min(1, exp(-0.5*(data(i)-max(S(N+1)-K, 0))^2/sigma_star^2 - 0.5*(sigma_star-sigma(j))^2/delta^2));
u = rand();
if u < alpha
sigma(j) = sigma_star;
end
end
err(i) = abs(sigma(N+1)-sigma0);
end
res = err;
end
% 定义Euler逼近法函数
function res = eulerimpliedvol(K, S0, T, data, N, niter, delta)
dt = T / N;
t = 0:dt:T;
sigma0 = 0.1;
sigma = zeros(1, N+1);
sigma(1) = sigma0;
err = zeros(1, niter);
for i = 2:N+1
sigma(i) = sigma(i-1) + delta*randn();
end
for i = 1:niter
for j = 2:N+1
sigma_star = sigma(j-1) + delta*randn();
S_star = S(j-1) * exp((r - 0.5*sigma_star^2)*dt + sigma_star*sqrt(dt)*randn());
alpha = min(1, exp(-0.5*(data(i)-max(S_star-K, 0))^2/sigma_star^2 - 0.5*(sigma_star-sigma(j))^2/delta^2));
u = rand();
if u < alpha
sigma(j) = sigma_star;
end
end
err(i) = abs(sigma(N+1)-sigma0);
end
res = err;
end
% 定义Talay逼近法函数
function res = talayimpliedvol(K, S0, T, data, N, niter, delta)
dt = T / N;
t = 0:dt:T;
sigma0 = 0.1;
sigma = zeros(1, N+1);
sigma(1) = sigma0;
err = zeros(1, niter);
for i = 2:N+1
sigma(i) = sigma(i-1) + delta*randn();
end
for i = 1:niter
for j = 2:N+1
sigma_star = sigma(j-1) + delta*randn();
S_star = S(j-1) * exp((r - 0.5*sigma_star^2)*dt + sigma_star*sqrt(dt)*randn());
S_tilde = S(j-1) * exp((r - 0.5*sigma(j-1)^2)*dt + sigma(j-1)*sqrt(dt)*randn());
alpha = min(1, exp(-0.5*(data(i)-max(S_star-K, 0))^2/sigma_star^2 - 0.5*(sigma_star-sigma(j))^2/delta^2 ...
+ 0.5*(data(i)-max(S_tilde-K, 0))^2/sigma(j-1)^2 + 0.5*(sigma(j)-sigma(j-1))^2/delta^2));
u = rand();
if u < alpha
sigma(j) = sigma_star;
end
end
err(i) = abs(sigma(N+1)-sigma0);
end
res = err;
end
% 进行隐含波动率反演计算并绘制误差随迭代次数的图像
niter = 1000;
delta = 0.1;
err = impliedvol(K, S0, T, data, N, niter, delta);
plot(1:niter, err);
title('Absolute Error vs. Iteration');
xlabel('Iteration');
ylabel('Absolute Error');
% 进行Euler逼近法计算并绘制误差随时间步长数的变化趋势
niter = 100;
delta = 0.1;
err = zeros(1, 10);
for i = 1:10
N = 10*i;
err(i) = mean(eulerimpliedvol(K, S0, T, data, N, niter, delta));
end
plot(10:10:100, err);
title('Absolute Error vs. Number of Time Steps (Euler)');
xlabel('Number of Time Steps');
ylabel('Absolute Error');
% 进行Talay逼近法计算并绘制误差随时间步长数的变化趋势
niter = 100;
delta = 0.1;
err = zeros(1, 10);
for i = 1:10
N = 10*i;
err(i) = mean(talayimpliedvol(K, S0, T, data, N, niter, delta));
end
plot(10:10:100, err);
title('Absolute Error vs. Number of Time Steps (Talay)');
xlabel('Number of Time Steps');
ylabel('Absolute Error');
```
该代码首先定义了期权的参数,包括行权价、标的资产价格、到期时间和波动率。然后定义了生成模拟数据的函数 `simdata`,该函数根据给定的期权参数和时间步长生成一组模拟数据。
接着定义了三个函数,分别是隐含波动率反演函数 `impliedvol`,Euler逼近法函数 `eulerimpliedvol` 和Talay逼近法函数 `talayimpliedvol`。这三个函数都接受相同的参数,包括期权参数、模拟数据、时间步长数、迭代次数和步长大小。这些函数都使用MCMC方法对隐含波动率进行反演,并返回绝对误差随迭代次数或时间步长数的变化趋势。
最后,使用这些函数计算隐含波动率并绘制误差随迭代次数或时间步长数的图像。
阅读全文