for root, dirs, files in os.walk(root_dir): for file in files: if file.endswith('.csv'): # 读取csv文件并将其合并到数据框中 filepath = os.path.join(root, file) csv = pd.read_csv(filepath, encoding='GBK') df = df.append(csv, ignore_index=True)代码怎么加速

时间: 2024-02-14 12:14:40 浏览: 219
在处理大量数据时,可以通过以下几种方式来加速这段代码: 1. 使用多线程或多进程加速读取csv文件的过程。可以使用Python内置的`multiprocessing`模块或第三方库`dask`来实现。 2. 将读取的csv文件转换为二进制格式(如`feather`、`parquet`等),再进行读取。这种方式可以减少IO操作的时间,从而提高读取速度。 3. 对读取到的csv文件进行预处理,如去除不需要的列、转换数据类型等,可以减少后续操作的时间复杂度。 4. 对于较大的csv文件,可以将其切分为多个小文件进行处理,再将结果合并。这种方式可以充分利用多核CPU的并行处理能力。 5. 使用更快的csv文件读取库,如`pandas`的`read_csv()`方法在读取大文件时速度较慢,可以使用`read_csv()`的加速库`cudf`或`dask`的`read_csv()`方法来提高读取速度。
相关问题

df = pd.read_csv(os.path.join(sub_root, file))报错:UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb1 in position 6: invalid start byte

这个错误通常意味着您的 CSV 文件使用了其他编码方式(例如 GBK),而不是 UTF-8。您可以尝试指定文件编码方式来解决这个问题。以下是一个示例代码: ```python import os import pandas as pd # 设置文件夹路径 folder_path = "/path/to/folder" # 初始化计数器 total_rows = 0 # 遍历所有文件夹和文件 for root, dirs, files in os.walk(folder_path): for dir in dirs: # 如果子文件夹还有子子文件夹 for sub_root, sub_dirs, sub_files in os.walk(os.path.join(root, dir)): for file in sub_files: # 如果文件是 CSV 文件 if file.endswith(".csv"): # 读取 CSV 文件,并指定编码方式 df = pd.read_csv(os.path.join(sub_root, file), encoding='GBK') rows = df.shape[0] # 将行数加到计数器中 total_rows += rows # 输出结果 print("总行数为:", total_rows) ``` 请将 `/path/to/folder` 替换为您的文件夹路径。这个代码会遍历所有的子文件夹和 CSV 文件,并使用 pandas 库读取 CSV 文件并指定编码方式(例如 GBK),然后统计行数并加到计数器中,最后输出总行数。

wavelet_df.loc[i] = energy_values发生报错:发生异常: ValueError cannot set a row with mismatched columns File "/Users/dingfengyan/工作/项目开发/哈理工/批量导出功能/binzcsv+feature.py", line 150, in <module> wavelet_df.loc[i] = energy_values ~~~~~~~~~~~~~~^^^ ValueError: cannot set a row with mismatched columns

这个报错是因为在设置`wavelet_df.loc[i]`的时候,`energy_values`的长度与DataFrame的列数不匹配。可能是因为`energy_values`的长度与窗口数量不一致导致的。请确保`energy_values`的长度与窗口数量相同,并且DataFrame的列数已经正确初始化。你可以尝试以下修改: ```python import os import struct import pandas as pd import numpy as np import pywt # 定义窗口大小和步长 window_size = 100 step_size = 50 # 获取当前目录路径 current_dir = os.getcwd() # 创建原始csv目录 raw_csv_dir = os.path.join(current_dir, '原始csv') if not os.path.exists(raw_csv_dir): os.makedirs(raw_csv_dir) # 创建时频域特征csv目录 feature_csv_dir = os.path.join(current_dir, '时频域特征csv目录') if not os.path.exists(feature_csv_dir): os.makedirs(feature_csv_dir) def read_bin_file(file_path): # 打开bin文件并读取数据 with open(file_path, 'rb') as f: data = f.read() return data def convert_to_float(data): # 将每8个字节转为浮点数 floats = [] for i in range(0, len(data), 8): float_val = struct.unpack('f', data[i:i+4])[0] floats.append(float_val) return floats def calculate_statistics(window_data): # 计算统计指标和时频域参数 mean_value = np.mean(window_data) var_value = np.var(window_data) rms_value = np.sqrt(np.mean(np.square(window_data))) skewness = pd.Series(window_data).skew() kurtosis = pd.Series(window_data).kurt() crest_factor = np.max(np.abs(window_data)) / rms_value peak_factor = np.max(window_data) / rms_value impulse_factor = np.max(np.abs(window_data)) / np.mean(np.abs(window_data)) margin_factor = np.max(np.abs(window_data)) / np.std(window_data) return mean_value, var_value, rms_value, skewness, kurtosis, crest_factor, peak_factor, impulse_factor, margin_factor def calculate_wavelet_energy(window_data): # 计算小波能量值 coeffs = pywt.wavedec(window_data, 'db4', level=16) energy_values = [np.sum(np.square(coeff)) for coeff in coeffs] return energy_values # 遍历当前目录及子目录下的所有bin文件 for root, dirs, files in os.walk(current_dir): for file in files: if file.endswith('.bin'): bin_file_path = os.path.join(root, file) # 读取bin文件 bin_data = read_bin_file(bin_file_path) # 转换为浮点数 floats = convert_to_float(bin_data) # 创建DataFrame用于存储数据 df = pd.DataFrame(columns=['1', '2', '3']) # 将数据按顺序写入DataFrame的列中 df['1'] = floats[::3] df['2'] = floats[1::3] df['3'] = floats[2::3] # 将DataFrame保存为原始csv文件 csv_file_path = os.path.join(raw_csv_dir, f'{file}.csv') df.to_csv(csv_file_path, index=False) # 创建新的DataFrame用于存储时频域特征数据 feature_df = pd.DataFrame(columns=[f'{file}_mean', f'{file}_var', f'{file}_rms', f'{file}_skew', f'{file}_kurtosis', f'{file}_crest', f'{file}_peak', f'{file}_impulse', f'{file}_margin']) # 创建新的DataFrame用于存储小波特征数据 wavelet_df = pd.DataFrame(columns=[f'{file}_energy_{i}' for i in range(1, 17)]) # 对每列进行窗口切片,并计算统计指标和时频域参数 for col in df.columns: col_data = df[col] num_windows = (len(col_data) - window_size) // step_size + 1 for i in range(num_windows): window_data = col_data[i*step_size : i*step_size + window_size] # 计算统计指标和时频域参数 result = calculate_statistics(window_data) # 将结果添加到时频域特征DataFrame feature_df.loc[i] = result # 计算小波能量值 energy_values = calculate_wavelet_energy(window_data) # 将结果添加到小波特征DataFrame wavelet_df.loc[i, [f'{file}_energy_{j+1}' for j in range(len(energy_values))]] = energy_values # 将时频域特征数据保存为新的csv文件 feature_csv_file_path = os.path.join(feature_csv_dir, f'{file}.csv') feature_df.to_csv(feature_csv_file_path, index=False) # 将小波特征数据保存为新的csv文件 wavelet_csv_file_path = os.path.join(feature_csv_dir, f'{file}_wavelet.csv') wavelet_df.to_csv(wavelet_csv_file_path, index=False) print("时频域特征csv文件和小波特征csv文件生成完成") ``` 在上述代码中,我修改了计算小波能量值的部分,使用`wavelet_df.loc[i, [f'{file}_energy_{j+1}' for j in range(len(energy_values))]]`来设置每行的值。这样可以确保`energy_values`的长度与DataFrame的列数匹配。请注意在保存小波特征数据的csv文件时,我将文件名命名为`{file}_wavelet.csv`,以区分时频域特征数据的csv文件。
阅读全文

相关推荐

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

(35734838)信号与系统实验一实验报告

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

YOLO算法-椅子检测故障数据集-300张图像带标签.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

基于小程序的新冠抗原自测平台小程序源代码(java+小程序+mysql+LW).zip

系统可以提供信息显示和相应服务,其管理新冠抗原自测平台小程序信息,查看新冠抗原自测平台小程序信息,管理新冠抗原自测平台小程序。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 部署容器:tomcat7 小程序开发工具:hbuildx/微信开发者工具
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。