tensorflow的图卷积神经网络的代码Python
时间: 2024-05-02 11:18:38 浏览: 101
以下是一个简单的图卷积神经网络的 TensorFlow 2.0 实现:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
class GraphConvolution(tf.keras.layers.Layer):
def __init__(self, output_dim):
super(GraphConvolution, self).__init__()
self.output_dim = output_dim
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[-1], self.output_dim),
initializer='glorot_uniform',
trainable=True)
def call(self, inputs):
features, adj = inputs
output = tf.matmul(adj, features)
output = tf.matmul(output, self.kernel)
return output
class GCNModel(tf.keras.models.Model):
def __init__(self, input_dim, hidden_dim, output_dim, dropout_rate):
super(GCNModel, self).__init__()
self.input_layer = Input(shape=(input_dim,))
self.dropout_layer = Dropout(rate=dropout_rate)(self.input_layer)
self.hidden_layer = GraphConvolution(hidden_dim)([self.dropout_layer, adj])
self.hidden_layer = tf.nn.relu(self.hidden_layer)
self.dropout_layer = Dropout(rate=dropout_rate)(self.hidden_layer)
self.output_layer = GraphConvolution(output_dim)([self.dropout_layer, adj])
self.output_layer = tf.nn.softmax(self.output_layer, axis=-1)
self.model = Model(inputs=self.input_layer, outputs=self.output_layer)
def call(self, inputs):
return self.model(inputs)
# 定义超参数
input_dim = adj.shape[0]
hidden_dim = 16
output_dim = 7
dropout_rate = 0.5
learning_rate = 0.01
epochs = 200
# 定义模型、优化器和损失函数
model = GCNModel(input_dim, hidden_dim, output_dim, dropout_rate)
optimizer = Adam(lr=learning_rate)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()
# 训练模型
for epoch in range(epochs):
with tf.GradientTape() as tape:
logits = model(inputs)
loss_value = loss_fn(labels, logits)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if epoch % 10 == 0:
print(f"Epoch {epoch}: Loss = {loss_value.numpy()}")
```
在这个实现中,`GraphConvolution` 是一个自定义层,用于实现图卷积操作。`GCNModel` 是一个自定义模型,由两个 `GraphConvolution` 层和一个 Dropout 层组成。在训练过程中,我们使用 Adam 优化器和交叉熵损失函数。
阅读全文