Holland模型matlab代码
时间: 2024-02-06 19:03:40 浏览: 131
Holland模型是一种人工智能算法,用于解决优化问题。下面是Holland模型的简单matlab代码示例:
```matlab
% Holland模型的matlab代码示例
% 初始化参数
pop_size = 100; % 种群大小
gene_length = 10; % 基因长度
pc = 0.8; % 交叉概率
pm = 0.01; % 变异概率
max_gen = 100; % 最大迭代次数
% 初始化种群
pop = round(rand(pop_size, gene_length));
% 迭代
for i = 1:max_gen
% 评估适应度
fitness = sum(pop, 2);
% 选择
cum_fit = cumsum(fitness);
new_pop = zeros(pop_size, gene_length);
for j = 1:pop_size
rand_fit = rand()*cum_fit(end);
idx = find(cum_fit >= rand_fit, 1);
new_pop(j, :) = pop(idx, :);
end
% 交叉
for j = 1:2:pop_size
if rand() < pc
k = randi([1, gene_length-1]);
temp = new_pop(j+1, k+1:end);
new_pop(j+1, k+1:end) = new_pop(j, k+1:end);
new_pop(j, k+1:end) = temp;
end
end
% 变异
for j = 1:pop_size
for k = 1:gene_length
if rand() < pm
new_pop(j, k) = 1 - new_pop(j, k);
end
end
end
% 更新种群
pop = new_pop;
end
% 找到最优解
fitness = sum(pop, 2);
[~, idx] = max(fitness);
best_solution = pop(idx, :);
best_fitness = fitness(idx);
disp(['最优解为:', num2str(best_solution)]);
disp(['最优解的适应度为:', num2str(best_fitness)]);
```
以上代码演示了Holland模型的基本流程,具体可根据实际情况进行修改和优化。
阅读全文