python问答系统代码实现
时间: 2023-09-04 17:16:17 浏览: 108
智能问答系统python实现
5星 · 资源好评率100%
要实现一个Python问答系统,需要先搭建一个语料库,然后用自然语言处理(NLP)技术提取问题和答案,最后将其封装为一个可交互的界面。
以下是一个简单的Python问答系统示例:
```python
import nltk
from nltk.corpus import wordnet
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import WordNetLemmatizer
# 初始化Lemmatizer
lemmatizer = WordNetLemmatizer()
# 读取语料库
corpus = open('corpus.txt').read()
# 将文本分成句子
sentences = sent_tokenize(corpus)
# 将句子分成单词
words = word_tokenize(corpus)
# 将每个单词还原为原型
lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
# 获取同义词
synonyms = []
for word in lemmatized_words:
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.append(lemma.name())
# 去除重复的同义词
synonyms = set(synonyms)
# 定义回答问题的函数
def answer_question(question):
# 将问题分成单词
words = word_tokenize(question)
# 将每个单词还原为原型
lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
# 获取问题的同义词
question_synonyms = []
for word in lemmatized_words:
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
question_synonyms.append(lemma.name())
# 去除重复的同义词
question_synonyms = set(question_synonyms)
# 找到问题和答案之间的最佳匹配
best_match = ""
max_overlap = 0
for sentence in sentences:
# 将句子分成单词
words = word_tokenize(sentence)
# 将每个单词还原为原型
lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
# 获取句子的同义词
sentence_synonyms = []
for word in lemmatized_words:
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
sentence_synonyms.append(lemma.name())
# 去除重复的同义词
sentence_synonyms = set(sentence_synonyms)
# 计算问题和句子之间的重叠
overlap = len(question_synonyms.intersection(sentence_synonyms))
# 如果重叠大于最大重叠,则更新最佳匹配
if overlap > max_overlap:
max_overlap = overlap
best_match = sentence
return best_match
# 与用户交互
while True:
question = input("请输入您的问题: ")
answer = answer_question(question)
print(answer)
```
注意,这只是一个简单的示例,如果您需要实现一个更复杂的问答系统,需要更多的自然语言处理技术和算法。
阅读全文