var year = data.order_date; var sales = data.sales; var quantity = data.quantity; var profit = data.profit; myChart.setOption({ xAxis: { type: 'category', data: year }, yAxis: { type: 'value' }, series: [ { name: 'sales', type: 'bar', data: sales, itemStyle: { color: 'red' } }, { name: 'quantity', type: 'bar', data: quantity, itemStyle: { color: 'yellow' } }, { name: 'profit', type: 'bar', data: profit, itemStyle: { color: 'green' } } ] });如何改正代码,将对应年份的销售额、数量、利润成三条柱状图,每一个年份上有三条柱状图

时间: 2024-03-15 16:44:59 浏览: 13
您可以尝试以下代码,它将每个年份的销售额、数量和利润作为一组数据,以三个柱状图的形式呈现,并将它们按照年份进行分组: ``` myChart.setOption({ tooltip: { trigger: 'axis', axisPointer: { type: 'shadow' } }, legend: { data: ['sales', 'quantity', 'profit'] }, xAxis: { type: 'category', data: year }, yAxis: { type: 'value' }, series: [ { name: 'sales', type: 'bar', data: sales, itemStyle: { color: 'red' } }, { name: 'quantity', type: 'bar', data: quantity, itemStyle: { color: 'yellow' } }, { name: 'profit', type: 'bar', data: profit, itemStyle: { color: 'green' } } ], dataset: { source: data }, series: [ {type: 'bar', seriesLayoutBy: 'row'}, {type: 'bar', seriesLayoutBy: 'row'}, {type: 'bar', seriesLayoutBy: 'row'} ] }); ``` 这里使用了`dataset`组件来将数据按照年份进行分组。然后使用`seriesLayoutBy`来将三个柱状图按照行进行排列,以便每个年份上都有三个柱状图。

相关推荐

以hive的角度检查语法: with cur_dim_comb as (SELECT DISTINCT t.dim_comb ,t.var_sub_class ,t.acc_value FROM gerp.cux_cst_data_alloc_his t WHERE t.top_var_type = '10' AND t.job_ver_id in (SELECT ver.job_ver_id AS p_job_ver_id FROM gerp.cux_cst_dist_jobs_all job INNER JOIN gerp.cux_cst_dist_jobs_vers_all ver ON job.job_id = ver.job_id )) select tp.bd_code --事业部编码 ,tp.bd_name --事业部名称 ,hp.ou_code --OU名称 ,hp.ou_name --OU编码 ,op.main_class_desc --差异大类 ,op.acc_value --科目代码 ,op.acc_desc --科目名称 ,op.dim_comb --区分维度 ,op.begin_amount --期初余额 ,op.accrual_amount --本期发生 ,op.balance_diff_alloc_amount --期末差异结存 ,op.var_sub_class ,op.main_class_value ,op.org_id ,op.period_name ,op.job_ver_id from (select up.* ,q1.* from (SELECT DISTINCT maincl.* ,t.* FROM t inner join (SELECT fv.flex_value ,fv.description FROM fv inner join fs on fv.flex_value_set_id = fs.flex_value_set_id AND fs.flex_value_set_name = 'CUX_CST_VARIANCE_TYPE' AND fv.enabled_flag = 'Y' AND fv.hierarchy_level = '2' AND fv.flex_value LIKE '10%' ) maincl on t.var_main_class = maincl.flex_value inner join cur_dim_comb on cur_dim_comb.var_sub_class = t.var_sub_class and cur_dim_comb.acc_value = t.acc_value WHERE 1 = 1 AND t.top_var_type = '10' AND t.job_ver_id in (SELECT ver.job_ver_id AS p_job_ver_id FROM gerp.cux_cst_dist_jobs_all job INNER JOIN gerp.cux_cst_dist_jobs_vers_all ver ON job.job_id = ver.job_id) ORDER BY maincl.description ,t.acc_value ,cur_dim_comb.dim_comb ) up inner join (SELECT t1.* ,SUM(t1.begin_amount) begin_amount ,SUM(t1.accrual_amount) accrual_amount ,SUM(t1.balance_diff_alloc_amount) balance_diff_alloc_amount FROM gerp.cux_cst_data_alloc_his t1 LEFT JOIN gerp.cux_cst_data_alloc_his t ON t1.top_var_type = '10' AND t1.var_sub_class = t.var_sub_class --p_var_sub_class AND t1.org_id = t.org_id --p_org_id AND t1.period_name = t.period_name --p_period_name AND t1.job_ver_id = t.job_ver_id --p_job_ver_id AND t1.acc_value = t.acc_value --p_acc_value WHERE t1.dim_comb in (select distinct dim_comb from cur_dim_comb) group by t1.org_id,t1.period_name,t1.job_ver_id,t1.var_sub_class,t1.acc_value ) q1 on q1.org_id = up.org_id --p_org_id AND q1.period_name = up.period_name --p_period_name AND q1.job_ver_id = up.job_ver_id --p_job_ver_id AND q1.var_sub_class = up.var_sub_class --p_var_sub_class AND q1.acc_value = up.acc_value --p_acc_value ) op

class Lnput_lnitialization(): def __init__(self, top, Number_of_rows): self.top = top int(data_demo.window_width // 3.9875) int(data_demo.window_height // 1.138) self.frame = tk.Frame(self.top, bg='Black', highlightthickness=2, highlightbackground='Black') self.frame.place(relx=0.739, rely=0.083, width=int(data_demo.window_width // 3.87), height=int(data_demo.window_height // 1.15)) self.canvas = tk.Canvas(self.frame) self.canvas.place(relx=0, rely=0, width=int(data_demo.window_width // 3.9875), height=int(data_demo.window_height // 1.15)) scrollbar = tk.Scrollbar(self.frame, command=self.canvas.yview) scrollbar.pack(side="right", fill="y") self.canvas.configure(yscrollcommand=scrollbar.set) self.button_frame = tk.Frame(self.canvas, bg='Yellow') self.canvas.create_window((0, 0), window=self.button_frame, anchor="nw") self.Content(Number_of_rows) # 在步骤栏创建填写框 def Content(self, Number_of_rows): x = 0.01 y = 0.01 for a in range(Number_of_rows): var = tk.IntVar() checkbutton1 = Checkbutton(self.button_frame, variable=var, text="{}".format(data_demo.Serial_Number), compound='right') checkbutton1.grid(row=data_demo.Serial_Number, column=1, padx=3, pady=5) data_demo.checkbutton1_boxs.append(checkbutton1) data_demo.checkbutton_bool.append(var) combobox1 = ttk.Combobox(self.button_frame, values=["遥控", "语音", "随机"], width=4) combobox1.grid(row=data_demo.Serial_Number, column=2, padx=6, pady=5) data_demo.comboxox_boxs.append(combobox1)怎么让他自适应大小

import pandas as pd import datetimeimport tkinter as tkfrom tkinter import filedialogclass MyApplication(tk.Frame): def __init__(self, master=None): super().__init__(master) self.master = master self.master.title("智能POS明细提取") self.pack() self.create_widgets() def create_widgets(self): self.label_1 = tk.Label(self, text="请选择Excel文件:") self.label_1.pack() self.file_button = tk.Button(self, text="选择文件", command=self.load_file) self.file_button.pack() self.label_2 = tk.Label(self, text="请选择提取内容:") self.label_2.pack() self.choice_var = tk.StringVar() self.choice_var.set("1") self.radio_1 = tk.Radiobutton(self, text="按省提取", variable=self.choice_var, value="1") self.radio_1.pack() self.radio_2 = tk.Radiobutton(self, text="全部提取", variable=self.choice_var, value="2") self.radio_2.pack() self.submit_button = tk.Button(self, text="提取数据", command=self.extract_data) self.submit_button.pack() self.quit_button = tk.Button(self, text="退出", command=self.master.quit) self.quit_button.pack() def load_file(self): self.file_path = filedialog.askopenfilename(title="选择Excel文件", filetypes=[("Excel files", "*.xlsx")]) def extract_data(self): now = datetime.datetime.now().strftime('%Y%m%d') data = pd.read_excel(self.file_path, dtype={'商户编号':str,'终端编号':str}) department_list = data['省份'].unique() choice = self.choice_var.get() if choice == '1': department_name = input('请输入省份名称:') if department_name in department_list: new_df = data[data['省份'] == department_name ] file_name = department_name + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False) else: print('无法找到该省份!') elif choice == '2': for department in department_list: new_df = data[data['省份'] == department] file_name = department + '智能POS明细' + now + '.xlsx' new_df.to_excel(file_name, index=False)root = tk.Tk()app = MyApplication(master=root)app.mainloop()

function median_target(var) { temp = data[data[var].notnull()]; temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index(); return temp; } data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5; data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5; data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107; data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1; data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27; data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32; data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70; data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5; data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1; data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3; target_col = ["Outcome"]; cat_cols = data.nunique()[data.nunique() < 12].keys().tolist(); cat_cols = [x for x in cat_cols]; num_cols = [x for x in data.columns if x not in cat_cols + target_col]; bin_cols = data.nunique()[data.nunique() == 2].keys().tolist(); multi_cols = [i for i in cat_cols if i in bin_cols]; le = LabelEncoder(); for i in bin_cols: data[i] = le.fit_transform(data[i]); data = pd.get_dummies(data=data, columns=multi_cols); std = StandardScaler(); scaled = std.fit_transform(data[num_cols]); scaled = pd.DataFrame(scaled, columns=num_cols); df_data_og = data.copy(); data = data.drop(columns=num_cols, axis=1); data = data.merge(scaled, left_index=True, right_index=True, how='left'); X = data.drop('Outcome', axis=1); y = data['Outcome']; X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1); y_train = to_categorical(y_train); y_test = to_categorical(y_test);将这段代码添加注释

最新推荐

recommend-type

微信小程序中为什么使用var that=this

 在小程序或者js开发中,经常需要使用var that = this;开始我以为是无用功,(原谅我的无知),后来从面向对象的角度一想就明白了,下面简单解释一下我自己的理解,欢迎指正批评。 代码示例: Page({ data: { ...
recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步