给出对CLIP预训练模型知识蒸馏的训练代码,要求有kl_div loss和soft loss和hard loss,只给出训练代码即可,重点体现soft loss和hard loss
时间: 2024-02-11 20:05:45 浏览: 153
以下是一个基于PyTorch的CLIP知识蒸馏训练代码,包括KL散度loss、soft loss和hard loss:
```python
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import Compose, ToTensor, Normalize
from models import StudentModel, TeacherModel
def kl_div_loss(p, q):
"""
KL散度loss
"""
return F.kl_div(F.log_softmax(p, dim=1), F.softmax(q, dim=1), reduction='batchmean')
def soft_loss(p, q, t=3):
"""
soft loss
"""
return F.kl_div(F.log_softmax(p/t, dim=1), F.softmax(q/t, dim=1), reduction='batchmean') * t * t
def hard_loss(p, q):
"""
hard loss
"""
return F.cross_entropy(p, q)
def train():
# 加载数据
transform = Compose([ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset = CIFAR10('./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=128, shuffle=True, num_workers=4, pin_memory=True)
# 加载模型
teacher = TeacherModel()
student = StudentModel()
# 设置优化器
teacher_optimizer = torch.optim.Adam(teacher.parameters(), lr=0.001)
student_optimizer = torch.optim.Adam(student.parameters(), lr=0.001)
# 设置温度
t = 3
# 训练
for epoch in range(10):
for i, (images, labels) in enumerate(dataloader):
# 前向传播
teacher_outputs = teacher(images)
student_outputs = student(images)
# 计算loss
kl_loss = kl_div_loss(student_outputs, teacher_outputs.detach())
soft_loss = soft_loss(student_outputs, teacher_outputs.detach(), t)
hard_loss = hard_loss(student_outputs, labels)
total_loss = kl_loss + soft_loss + hard_loss
# 反向传播
teacher_optimizer.zero_grad()
student_optimizer.zero_grad()
total_loss.backward()
teacher_optimizer.step()
student_optimizer.step()
# 打印结果
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/10], Step [{i+1}/391], Loss: {total_loss.item():.4f}')
# 降低温度
t *= 0.9
# 保存模型
torch.save(student.state_dict(), 'student.pth')
```
在上面的代码中,`kl_div_loss()`函数计算KL散度loss,`soft_loss()`函数计算soft loss,`hard_loss()`函数计算hard loss。在训练过程中,我们使用了这三种loss的加权和作为总的loss进行反向传播。同时,我们还使用了不同的温度t来控制soft loss的权重,以达到更好的效果。最终,我们保存了训练好的student模型。
阅读全文