from imageio import imwrite是什么意思
时间: 2024-03-08 15:51:19 浏览: 49
`imageio` 是一个 Python 库,它提供了一种方便的方式来读取和写入各种图像文件格式。`imwrite` 是 `imageio` 库中的一个函数,用于将图像数据保存到指定路径的文件中。这个函数需要传入两个参数:第一个参数是要保存的文件路径,第二个参数是要保存的图像数据。例如,以下代码将一张名为 `image.png` 的图片保存到当前工作目录下:
```python
from imageio import imwrite
import numpy as np
# 创建一个随机的 128x128 的图像
image_data = np.random.rand(128, 128, 3)
# 将图像保存到文件
imwrite('image.png', image_data)
```
相关问题
test_images = 'data/test' # 定义测试集图像路径 test_data = [] for path in test_images: image = imageio.imread(path) image = np.expand_dims(image, axis=-1) image = image / 255.0 test_data.append(image) test_data = np.array(test_data) predictions = model.predict(test_data) # 保存预测结果 for i, pred in enumerate(predictions): imageio.imwrite(f"prediction_{i}.png", pred)怎么改
如果你想改进这段代码,可以考虑以下几点:
1. 使用更快速的图像读取方式,比如使用Pillow库的Image.open()方法,可以提高读取速度。
2. 如果测试集图像数量较大,可以考虑使用tf.data.Dataset读取数据,可以提高数据读取速度和训练效率。
3. 在预测结果保存时,可以使用更加直观的文件名,比如使用测试集图像的文件名作为预测结果文件名,方便后续查看和分析。
下面是代码示例:
```python
import os
import tensorflow as tf
from PIL import Image
test_images = 'data/test' # 定义测试集图像路径
test_data = []
for filename in os.listdir(test_images):
path = os.path.join(test_images, filename)
with Image.open(path) as img:
img = img.convert('L') # 转换为灰度图像
img = np.array(img) / 255.0 # 归一化
test_data.append(img)
test_data = np.array(test_data)
predictions = model.predict(test_data) # 预测结果
for i, pred in enumerate(predictions):
filename = os.listdir(test_images)[i]
new_filename = os.path.splitext(filename)[0] + '_prediction.png' # 构造新文件名
imageio.imwrite(new_filename, pred)
```
这样改进后的代码,可以更加高效地读取测试集图像数据,并保存预测结果。
替换掉此代码里的import cv2模块,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" +name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path= 'E:\dataset\LiTS17\' savepath = 'E:\dataset\LiTS17\2d\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
将import cv2替换为from PIL import Image即可,函数中用到了cv2.threshold函数,可以使用PIL中的ImageOps.autocontrast()函数代替。修改后的代码如下:
```python
import os
import numpy as np
import nibabel as nib
import imageio
from PIL import Image, ImageOps
def read_niifile(niifilepath): # 读取niifile文件
img = nib.load(niifilepath) # 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
def save_fig(niifilepath, savepath, num, name): # 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name
filepath_vol = niifilepath + "volume\\" + "volume-" +name
savepath_seg = savepath + "segmentation\\"
savepath_vol = savepath + "volume\\"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
silce_seg = Image.fromarray(silce_seg.astype(np.uint8))
silce_seg = ImageOps.autocontrast(silce_seg,1)
silce_seg = np.array(silce_seg)
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
num += 1
# 将切片信息保存为png格式
return num
if __name__ == '__main__':
path= 'E:\\dataset\\LiTS17\\'
savepath = 'E:\\dataset\\LiTS17\\2d\\'
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
阅读全文