recursion tree

时间: 2023-10-10 07:12:37 浏览: 39
递归树是一种图形模型,用于分析递归算法的运行过程。当我们使用递归算法时,可以将递归调用抽象成一棵树,这棵树就是递归树。递归树可以帮助我们更好地理解递归算法的运行过程,并且可以帮助我们分析算法的时间复杂度和空间复杂度。通过观察递归树的结构和特点,我们可以发现算法的重复计算、重复访问的情况,从而优化算法的效率和代码的复杂度。通过分析递归树,我们可以更好地理解递归算法的工作原理,从而更好地设计和优化递归算法。
相关问题

Use the ALC-Worlds algorithm to decide the satisfiability of the concept name B0 w.r.t. the simple Tbox,Draw the recursion tree of a successful run and of an unsuccessful run. Does the algorithm return a positive or negative result on this input? B0 ≡ B1\bigsqcapB2 B1 ≡ ∃r.B3 B2 ≡ B4 \bigsqcap B5 B3 ≡ P B4 ≡ ∃r.B6 B5 ≡ B7 \sqcap B8 B6 ≡ Q B7 ≡ ∀r.B4 B8 ≡ ∀r.B9 B9 ≡ ∀r.B10 B10 ≡ ¬P

To use the ALC-Worlds algorithm, we first need to convert the Tbox and the concept name B0 into their ALC syntax: B0 ≡ B1 ⊓ B2 B1 ≡ ∃r.B3 B2 ≡ B4 ⊓ B5 B3 ≡ P B4 ≡ ∃r.B6 B5 ≡ B7 ⊓ B8 B6 ≡ Q B7 ≡ ∀r.B4 B8 ≡ ∀r.B9 B9 ≡ ∀r.B10 B10 ≡ ¬P Now, we can start the algorithm: 1. Initialize the set of worlds W to contain the empty interpretation {}. 2. For each concept name and role name, initialize its interpretation in each world to the empty set. 3. For each concept name A that appears in the Tbox, add the pair (A, {}) to the interpretation of A in each world. 4. For each role name r that appears in the Tbox, add the pair (r, {}) to the interpretation of r in each world. 5. For each concept name A that appears in the definition of a concept or role in the Tbox, propagate its interpretation to all worlds that satisfy that concept or role. 6. For each concept name A that appears in the definition of a concept or role in the Tbox, repeat step 5 until no more interpretations can be propagated. 7. For each world w in W, check if w satisfies B0. If so, return "satisfiable" and the model consisting of all interpretations in w. If not, mark w as unsatisfiable. 8. If all worlds are marked as unsatisfiable, return "unsatisfiable". Recursion tree for a successful run: ``` W={} | W1={r={}, B3={}} | W2={r={}, B3={}, B6={}} | W3={r={}, B3={}, B6={Q}} | W4={r={}, B3={P}, B6={Q}} | W5={r={r1:W4}, B3={P}, B6={Q}} | W6={r={r1:W4, r2:W5}, B3={P}, B6={Q}} | W7={r={r1:W4, r2:W5, r3:W6}, B3={P}, B6={Q}} | W8={r={r1:W4, r2:W5, r3:W6, r4:W7}, B3={P}, B6={Q}} | W9={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8}, B3={P}, B6={Q}} | W10={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={P}, B6={Q}} | W11={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={}, B6={Q}} | W12={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={P}, B6={}} | W13={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12}, B3={P}, B6={}} | W14={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12, r8:W13}, B3={P}, B6={}} | W15={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12, r8:W13, r9:W14}, B3={P}, B6={}} | W16={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12, r8:W13, r9:W14, r10:W15}, B3={P}, B6={¬P}} The algorithm returns a positive result (i.e., "satisfiable") with the model consisting of all interpretations in W16. Recursion tree for an unsuccessful run: ``` W={} | W1={r={}, B3={}} | W2={r={}, B3={}, B6={}} | W3={r={}, B3={}, B6={Q}} | W4={r={}, B3={P}, B6={Q}} | W5={r={r1:W4}, B3={P}, B6={Q}} | W6={r={r1:W4, r2:W5}, B3={}, B6={Q}} | W7={r={r1:W4, r2:W5, r3:W6}, B3={P}, B6={Q}} | W8={r={r1:W4, r2:W5, r3:W6, r4:W7}, B3={P}, B6={Q}} | W9={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8}, B3={P}, B6={Q}} | W10={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={}, B6={Q}} | W11={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10}, B3={P}, B6={Q}} | W12={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10, r8:W11}, B3={P}, B6={Q}} | W13={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10, r8:W11, r9:W12}, B3={P}, B6={Q}} | W14={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10, r8:W11, r9:W12, r10:W13}, B3={P}, B6={¬P}} The algorithm returns a negative result (i.e., "unsatisfiable") as all worlds are marked as unsatisfiable.

Suppose you have a lock that consists of 5 digits that are randomly chosen from the set {0,1,2,3,4,5,6,7,8,9}. Write a C++ program to demonstrate how to find the correct lock combination by using recursion and backtracking. Show step-by-step how to solve the problem. Draw three recursive level calls example for the recursion tree call with input values. Note that, the initial state of the key is {0,0,0,0,0} and the lock combination is randomly chosen {rand(0-9), rand(0-9), rand(0-9), rand(0-9), ), rand(0-9)}.

Sure, I can help you with that! Here's a C++ program that uses recursion and backtracking to find the correct lock combination: ```cpp #include <iostream> #include <vector> #include <cstdlib> #include <ctime> using namespace std; const int NUM_DIGITS = 5; void generateRandomCombination(vector<int>& combination) { for (int i = 0; i < NUM_DIGITS; i++) { combination.push_back(rand() % 10); } } void printCombination(const vector<int>& combination) { for (int i = 0; i < NUM_DIGITS; i++) { cout << combination[i]; } cout << endl; } bool tryCombination(vector<int>& currentCombination, const vector<int>& targetCombination, int digitIndex) { if (digitIndex == NUM_DIGITS) { return currentCombination == targetCombination; } for (int i = 0; i < 10; i++) { currentCombination[digitIndex] = i; if (tryCombination(currentCombination, targetCombination, digitIndex + 1)) { return true; } } return false; } int main() { srand(time(0)); vector<int> targetCombination; generateRandomCombination(targetCombination); cout << "Target combination: "; printCombination(targetCombination); vector<int> currentCombination(NUM_DIGITS, 0); if (tryCombination(currentCombination, targetCombination, 0)) { cout << "Found the correct combination: "; printCombination(currentCombination); } else { cout << "Unable to find the correct combination." << endl; } return 0; } ``` The `generateRandomCombination` function generates a random lock combination and stores it in a vector. The `printCombination` function simply prints out a given combination. The `tryCombination` function takes in the current combination being tested, the target combination to be found, and the current digit index that is being tested. It recursively tries all possible combinations of digits for the current index, and returns true if the correct combination is found. In the `main` function, we first generate a random target combination, print it out, and initialize the current combination to all zeros. We then call `tryCombination` with the current combination, target combination, and starting index of 0. If the correct combination is found, we print it out. Otherwise, we print a message saying that we were unable to find the correct combination. Here are three example recursive level calls for the recursion tree call with input values: ``` tryCombination({0, 0, 0, 0, 0}, {3, 2, 5, 8, 1}, 0) ├──tryCombination({0, 0, 0, 0, 3}, {3, 2, 5, 8, 1}, 1) │ ├──tryCombination({0, 0, 0, 2, 3}, {3, 2, 5, 8, 1}, 2) │ │ ├──tryCombination({0, 0, 5, 2, 3}, {3, 2, 5, 8, 1}, 3) │ │ │ ├──tryCombination({3, 0, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) // returns true │ │ │ └──tryCombination({4, 0, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) │ │ └──tryCombination({0, 1, 5, 2, 3}, {3, 2, 5, 8, 1}, 3) │ │ ├──tryCombination({3, 1, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) // returns true │ │ └──tryCombination({4, 1, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) │ └──tryCombination({0, 2, 5, 2, 3}, {3, 2, 5, 8, 1}, 3) │ ├──tryCombination({3, 2, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) // returns true │ └──tryCombination({4, 2, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) ├──tryCombination({0, 0, 0, 0, 4}, {3, 2, 5, 8, 1}, 1) │ ├──tryCombination({0, 0, 0, 2, 4}, {3, 2, 5, 8, 1}, 2) │ │ ├──tryCombination({0, 0, 5, 2, 4}, {3, 2, 5, 8, 1}, 3) │ │ │ ├──tryCombination({3, 0, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) // returns true │ │ │ └──tryCombination({4, 0, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) │ │ └──tryCombination({0, 1, 5, 2, 4}, {3, 2, 5, 8, 1}, 3) │ │ ├──tryCombination({3, 1, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) // returns true │ │ └──tryCombination({4, 1, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) │ └──tryCombination({0, 2, 5, 2, 4}, {3, 2, 5, 8, 1}, 3) │ ├──tryCombination({3, 2, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) // returns true │ └──tryCombination({4, 2, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) └──tryCombination({0, 0, 0, 0, 5}, {3, 2, 5, 8, 1}, 1) ├──tryCombination({0, 0, 0, 2, 5}, {3, 2, 5, 8, 1}, 2) │ ├──tryCombination({0, 0, 5, 2, 5}, {3, 2, 5, 8, 1}, 3) │ │ ├──tryCombination({3, 0, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) // returns true │ │ └──tryCombination({4, 0, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) │ └──tryCombination({0, 1, 5, 2, 5}, {3, 2, 5, 8, 1}, 3) │ ├──tryCombination({3, 1, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) // returns true │ └──tryCombination({4, 1, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) └──tryCombination({0, 2, 5, 2, 5}, {3, 2, 5, 8, 1}, 3) ├──tryCombination({3, 2, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) // returns true └──tryCombination({4, 2, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) ``` In this example, we're trying to find the correct combination for the lock with the target combination {3, 2, 5, 8, 1}. The recursion tree shows the different combinations being tried at each recursive call. At each level, the function tries all possible digits for the current index, and recursively calls itself with the next digit index. If a combination is found that matches the target combination, the function returns true and stops recursing.

相关推荐

最新推荐

recommend-type

nodejs-x64-0.10.21.tgz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。