recursion tree

时间: 2023-10-10 09:12:37 浏览: 31
递归树是一种图形模型,用于分析递归算法的运行过程。当我们使用递归算法时,可以将递归调用抽象成一棵树,这棵树就是递归树。递归树可以帮助我们更好地理解递归算法的运行过程,并且可以帮助我们分析算法的时间复杂度和空间复杂度。通过观察递归树的结构和特点,我们可以发现算法的重复计算、重复访问的情况,从而优化算法的效率和代码的复杂度。通过分析递归树,我们可以更好地理解递归算法的工作原理,从而更好地设计和优化递归算法。
相关问题

Use the ALC-Worlds algorithm to decide the satisfiability of the concept name B0 w.r.t. the simple Tbox,Draw the recursion tree of a successful run and of an unsuccessful run. Does the algorithm return a positive or negative result on this input? B0 ≡ B1\bigsqcapB2 B1 ≡ ∃r.B3 B2 ≡ B4 \bigsqcap B5 B3 ≡ P B4 ≡ ∃r.B6 B5 ≡ B7 \sqcap B8 B6 ≡ Q B7 ≡ ∀r.B4 B8 ≡ ∀r.B9 B9 ≡ ∀r.B10 B10 ≡ ¬P

To use the ALC-Worlds algorithm, we first need to convert the Tbox and the concept name B0 into their ALC syntax: B0 ≡ B1 ⊓ B2 B1 ≡ ∃r.B3 B2 ≡ B4 ⊓ B5 B3 ≡ P B4 ≡ ∃r.B6 B5 ≡ B7 ⊓ B8 B6 ≡ Q B7 ≡ ∀r.B4 B8 ≡ ∀r.B9 B9 ≡ ∀r.B10 B10 ≡ ¬P Now, we can start the algorithm: 1. Initialize the set of worlds W to contain the empty interpretation {}. 2. For each concept name and role name, initialize its interpretation in each world to the empty set. 3. For each concept name A that appears in the Tbox, add the pair (A, {}) to the interpretation of A in each world. 4. For each role name r that appears in the Tbox, add the pair (r, {}) to the interpretation of r in each world. 5. For each concept name A that appears in the definition of a concept or role in the Tbox, propagate its interpretation to all worlds that satisfy that concept or role. 6. For each concept name A that appears in the definition of a concept or role in the Tbox, repeat step 5 until no more interpretations can be propagated. 7. For each world w in W, check if w satisfies B0. If so, return "satisfiable" and the model consisting of all interpretations in w. If not, mark w as unsatisfiable. 8. If all worlds are marked as unsatisfiable, return "unsatisfiable". Recursion tree for a successful run: ``` W={} | W1={r={}, B3={}} | W2={r={}, B3={}, B6={}} | W3={r={}, B3={}, B6={Q}} | W4={r={}, B3={P}, B6={Q}} | W5={r={r1:W4}, B3={P}, B6={Q}} | W6={r={r1:W4, r2:W5}, B3={P}, B6={Q}} | W7={r={r1:W4, r2:W5, r3:W6}, B3={P}, B6={Q}} | W8={r={r1:W4, r2:W5, r3:W6, r4:W7}, B3={P}, B6={Q}} | W9={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8}, B3={P}, B6={Q}} | W10={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={P}, B6={Q}} | W11={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={}, B6={Q}} | W12={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={P}, B6={}} | W13={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12}, B3={P}, B6={}} | W14={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12, r8:W13}, B3={P}, B6={}} | W15={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12, r8:W13, r9:W14}, B3={P}, B6={}} | W16={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W12, r8:W13, r9:W14, r10:W15}, B3={P}, B6={¬P}} The algorithm returns a positive result (i.e., "satisfiable") with the model consisting of all interpretations in W16. Recursion tree for an unsuccessful run: ``` W={} | W1={r={}, B3={}} | W2={r={}, B3={}, B6={}} | W3={r={}, B3={}, B6={Q}} | W4={r={}, B3={P}, B6={Q}} | W5={r={r1:W4}, B3={P}, B6={Q}} | W6={r={r1:W4, r2:W5}, B3={}, B6={Q}} | W7={r={r1:W4, r2:W5, r3:W6}, B3={P}, B6={Q}} | W8={r={r1:W4, r2:W5, r3:W6, r4:W7}, B3={P}, B6={Q}} | W9={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8}, B3={P}, B6={Q}} | W10={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9}, B3={}, B6={Q}} | W11={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10}, B3={P}, B6={Q}} | W12={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10, r8:W11}, B3={P}, B6={Q}} | W13={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10, r8:W11, r9:W12}, B3={P}, B6={Q}} | W14={r={r1:W4, r2:W5, r3:W6, r4:W7, r5:W8, r6:W9, r7:W10, r8:W11, r9:W12, r10:W13}, B3={P}, B6={¬P}} The algorithm returns a negative result (i.e., "unsatisfiable") as all worlds are marked as unsatisfiable.

Suppose you have a lock that consists of 5 digits that are randomly chosen from the set {0,1,2,3,4,5,6,7,8,9}. Write a C++ program to demonstrate how to find the correct lock combination by using recursion and backtracking. Show step-by-step how to solve the problem. Draw three recursive level calls example for the recursion tree call with input values. Note that, the initial state of the key is {0,0,0,0,0} and the lock combination is randomly chosen {rand(0-9), rand(0-9), rand(0-9), rand(0-9), ), rand(0-9)}.

Sure, I can help you with that! Here's a C++ program that uses recursion and backtracking to find the correct lock combination: ```cpp #include <iostream> #include <vector> #include <cstdlib> #include <ctime> using namespace std; const int NUM_DIGITS = 5; void generateRandomCombination(vector<int>& combination) { for (int i = 0; i < NUM_DIGITS; i++) { combination.push_back(rand() % 10); } } void printCombination(const vector<int>& combination) { for (int i = 0; i < NUM_DIGITS; i++) { cout << combination[i]; } cout << endl; } bool tryCombination(vector<int>& currentCombination, const vector<int>& targetCombination, int digitIndex) { if (digitIndex == NUM_DIGITS) { return currentCombination == targetCombination; } for (int i = 0; i < 10; i++) { currentCombination[digitIndex] = i; if (tryCombination(currentCombination, targetCombination, digitIndex + 1)) { return true; } } return false; } int main() { srand(time(0)); vector<int> targetCombination; generateRandomCombination(targetCombination); cout << "Target combination: "; printCombination(targetCombination); vector<int> currentCombination(NUM_DIGITS, 0); if (tryCombination(currentCombination, targetCombination, 0)) { cout << "Found the correct combination: "; printCombination(currentCombination); } else { cout << "Unable to find the correct combination." << endl; } return 0; } ``` The `generateRandomCombination` function generates a random lock combination and stores it in a vector. The `printCombination` function simply prints out a given combination. The `tryCombination` function takes in the current combination being tested, the target combination to be found, and the current digit index that is being tested. It recursively tries all possible combinations of digits for the current index, and returns true if the correct combination is found. In the `main` function, we first generate a random target combination, print it out, and initialize the current combination to all zeros. We then call `tryCombination` with the current combination, target combination, and starting index of 0. If the correct combination is found, we print it out. Otherwise, we print a message saying that we were unable to find the correct combination. Here are three example recursive level calls for the recursion tree call with input values: ``` tryCombination({0, 0, 0, 0, 0}, {3, 2, 5, 8, 1}, 0) ├──tryCombination({0, 0, 0, 0, 3}, {3, 2, 5, 8, 1}, 1) │ ├──tryCombination({0, 0, 0, 2, 3}, {3, 2, 5, 8, 1}, 2) │ │ ├──tryCombination({0, 0, 5, 2, 3}, {3, 2, 5, 8, 1}, 3) │ │ │ ├──tryCombination({3, 0, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) // returns true │ │ │ └──tryCombination({4, 0, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) │ │ └──tryCombination({0, 1, 5, 2, 3}, {3, 2, 5, 8, 1}, 3) │ │ ├──tryCombination({3, 1, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) // returns true │ │ └──tryCombination({4, 1, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) │ └──tryCombination({0, 2, 5, 2, 3}, {3, 2, 5, 8, 1}, 3) │ ├──tryCombination({3, 2, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) // returns true │ └──tryCombination({4, 2, 5, 2, 3}, {3, 2, 5, 8, 1}, 4) ├──tryCombination({0, 0, 0, 0, 4}, {3, 2, 5, 8, 1}, 1) │ ├──tryCombination({0, 0, 0, 2, 4}, {3, 2, 5, 8, 1}, 2) │ │ ├──tryCombination({0, 0, 5, 2, 4}, {3, 2, 5, 8, 1}, 3) │ │ │ ├──tryCombination({3, 0, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) // returns true │ │ │ └──tryCombination({4, 0, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) │ │ └──tryCombination({0, 1, 5, 2, 4}, {3, 2, 5, 8, 1}, 3) │ │ ├──tryCombination({3, 1, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) // returns true │ │ └──tryCombination({4, 1, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) │ └──tryCombination({0, 2, 5, 2, 4}, {3, 2, 5, 8, 1}, 3) │ ├──tryCombination({3, 2, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) // returns true │ └──tryCombination({4, 2, 5, 2, 4}, {3, 2, 5, 8, 1}, 4) └──tryCombination({0, 0, 0, 0, 5}, {3, 2, 5, 8, 1}, 1) ├──tryCombination({0, 0, 0, 2, 5}, {3, 2, 5, 8, 1}, 2) │ ├──tryCombination({0, 0, 5, 2, 5}, {3, 2, 5, 8, 1}, 3) │ │ ├──tryCombination({3, 0, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) // returns true │ │ └──tryCombination({4, 0, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) │ └──tryCombination({0, 1, 5, 2, 5}, {3, 2, 5, 8, 1}, 3) │ ├──tryCombination({3, 1, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) // returns true │ └──tryCombination({4, 1, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) └──tryCombination({0, 2, 5, 2, 5}, {3, 2, 5, 8, 1}, 3) ├──tryCombination({3, 2, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) // returns true └──tryCombination({4, 2, 5, 2, 5}, {3, 2, 5, 8, 1}, 4) ``` In this example, we're trying to find the correct combination for the lock with the target combination {3, 2, 5, 8, 1}. The recursion tree shows the different combinations being tried at each recursive call. At each level, the function tries all possible digits for the current index, and recursively calls itself with the next digit index. If a combination is found that matches the target combination, the function returns true and stops recursing.

相关推荐

最新推荐

gensim-4.0.1-cp37-cp37m-win_amd64.whl.zip

gensim-4.0.1-cp37-cp37m-win_amd64.whl.zip

全球带电粒子探测器市场总体规模,前8强厂商排名及市场份额分析报告.docx

适合人群:投资者,创业者,企业领导者

交联脚本,史上最完整附带一个案例

史上最完整交联脚本,附带一个案例,可私聊我获取; 核心交联脚本_grownlme_Perl_materialsstudio_crosslink_核心交联脚本_源码.zip

基于C++与C#实现AI模型在OpenVINO、TensorRT、ONNX runtime以及OpenCV dnn四个平台的部署

实现AI模型在不同平台的部署。基于C++与C#两种编程语言,分别实现了在OpenVINO、TensorRT、ONNX runtime以及OpenCV dnn四个平台的部署,并提供了C#Winform桌面程序演示

selenium-2.30.0.tar.gz

py依赖包

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx