胶囊网络文本分类代码
时间: 2023-08-10 09:07:49 浏览: 137
胶囊网络代码
5星 · 资源好评率100%
以下是一个简单的胶囊网络文本分类代码示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
class CapsuleLayer(layers.Layer):
def __init__(self, num_capsules, capsule_dim, routings=3):
super(CapsuleLayer, self).__init__()
self.num_capsules = num_capsules
self.capsule_dim = capsule_dim
self.routings = routings
def build(self, input_shape):
_, input_num_capsules, input_capsule_dim = input_shape
self.input_num_capsules = input_num_capsules
self.input_capsule_dim = input_capsule_dim
self.W = self.add_weight(
shape=[input_num_capsules, self.num_capsules, input_capsule_dim, self.capsule_dim],
initializer='random_normal',
trainable=True
)
def call(self, inputs):
inputs_expand = tf.expand_dims(inputs, axis=2)
inputs_tiled = tf.tile(inputs_expand, [1, 1, self.num_capsules, 1])
inputs_hat = tf.einsum('bcd,eid->bcei', inputs_tiled, self.W)
b = tf.zeros([tf.shape(inputs_hat)[0], self.input_num_capsules, self.num_capsules])
for i in range(self.routings):
c = tf.nn.softmax(b, axis=2)
outputs = self.squash(tf.reduce_sum(c * inputs_hat, axis=1, keepdims=True))
if i < self.routings - 1:
b += tf.reduce_sum(inputs_hat * outputs, axis=-1)
return tf.squeeze(outputs, axis=1)
def squash(self, inputs):
squared_norm = tf.reduce_sum(tf.square(inputs), axis=-1, keepdims=True)
scale = squared_norm / (1 + squared_norm)
return scale * inputs / tf.sqrt(squared_norm)
class CapsuleNetwork(tf.keras.Model):
def __init__(self, num_classes):
super(CapsuleNetwork, self).__init__()
self.embedding = layers.Embedding(input_dim=10000, output_dim=128)
self.capsule_layer = CapsuleLayer(num_capsules=10, capsule_dim=16)
self.dense = layers.Dense(units=num_classes, activation='softmax')
def call(self, inputs):
x = self.embedding(inputs)
x = tf.reduce_mean(x, axis=1)
x = self.capsule_layer(x)
outputs = self.dense(x)
return outputs
# 使用示例
model = CapsuleNetwork(num_classes=10)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_data=(x_val, y_val))
```
请注意,这只是一个简单的示例代码,具体的实现细节可能会根据问题的具体要求而有所不同。在实际使用时,您可能需要根据自己的数据和任务对模型进行调整和优化。
阅读全文