CNN手写数字识别csv读取保存加载pytorch模型测试数据集和单张图片

时间: 2024-04-18 17:24:18 浏览: 165
你可以按照以下步骤使用CNN模型进行手写数字识别,包括CSV文件的读取、保存和加载以及测试数据集和单张图片。 1. 导入所需的库: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader import pandas as pd import numpy as np from sklearn.model_selection import train_test_split ``` 2. 定义CNN模型: ```python class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(7*7*64, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) x = x.view(-1, 7*7*64) x = self.fc1(x) x = self.relu3(x) x = self.fc2(x) return x model = CNN() ``` 3. 读取CSV文件并准备数据集: ```python class CustomDataset(Dataset): def __init__(self, csv_path): self.data = pd.read_csv(csv_path, header=None) def __len__(self): return len(self.data) def __getitem__(self, index): label = self.data.iloc[index, 0] image = self.data.iloc[index, 1:].values.reshape(28, 28).astype(np.uint8) image = np.expand_dims(image, axis=0) return image, label csv_path = 'path/to/your/csv/file.csv' dataset = CustomDataset(csv_path) ``` 4. 划分训练集和测试集: ```python train_dataset, test_dataset = train_test_split(dataset, test_size=0.2, random_state=42) ``` 5. 创建数据加载器: ```python batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) ``` 6. 定义损失函数和优化器: ```python criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 7. 训练模型: ```python num_epochs = 10 for epoch in range(num_epochs): train_loss = 0.0 model.train() for images, labels in train_loader: optimizer.zero_grad() outputs = model(images.float()) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) train_loss /= len(train_loader.dataset) print(f"Epoch: {epoch+1}/{num_epochs}, Training Loss: {train_loss:.4f}") ``` 8. 保存训练好的模型: ```python torch.save(model.state_dict(), 'path/to/save/model.pth') ``` 9. 加载已保存的模型并进行测试: ```python model.load_state_dict(torch.load('path/to/save/model.pth')) model.eval() test_loss = 0.0 correct = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images.float()) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, predicted = torch.max(outputs.data, 1) correct += (predicted == labels).sum().item() test_loss /= len(test_loader.dataset) accuracy = correct / len(test_loader.dataset) * 100 print(f"Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%") ``` 10. 使用模型进行单张图片的预测: ```python from PIL import Image image_path = 'path/to/your/image.jpg' image = Image.open(image_path).convert('L') image = np.array(image) image = np.expand_dims(image, axis=0) image = torch.from_numpy(image).unsqueeze(0) output = model(image.float()) _, predicted = torch.max(output.data, 1) print(f"Predicted Label: {predicted.item()}") ``` 请将 `path/to/your/csv/file.csv` 和 `path/to/save/model.pth` 替换为您的实际文件路径。另外,确保您的CSV文件以及要测试的单张图片符合要求。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

总的来说,通过这个教程,读者将学习如何在PyTorch中搭建和训练CGAN模型,使用MNIST数据集生成指定数字的图像。理解CGAN的工作原理及其在图像生成任务中的应用,对于进一步研究深度学习和生成模型的复杂性非常有帮助...
recommend-type

Pytorch之保存读取模型实例

在PyTorch中,保存和读取模型是训练过程中的重要环节,这有助于我们持久化模型,以便于后续的使用、继续训练或部署。本文将详细阐述如何在PyTorch中实现模型的保存和读取。 首先,PyTorch提供了两种主要的文件格式...
recommend-type

pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

通过以上步骤,我们可以用PyTorch实现VGG11模型在CIFAR-10数据集上的训练和单张图片预测,从而掌握深度学习中的图像分类技术。这种深度学习模型的应用广泛,不仅可以用于CIFAR-10,还可以扩展到其他图像分类任务,...
recommend-type

Pytorch提取模型特征向量保存至csv的例子

总的来说,这个例子展示了如何使用PyTorch从预训练模型中提取图像特征,并将这些特征向量保存到CSV文件,这对于后续的数据分析和机器学习任务非常有用。通过预训练模型,我们可以快速地从大量图像中获取有意义的表示...
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

总的来说,这个示例展示了如何使用Pytorch构建、训练和测试一个简单的CNN模型来识别MNIST数据集中的手写数字。通过理解并实践这个示例,开发者可以更好地掌握Pytorch的基本用法,并将其应用于更复杂的深度学习任务。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。