python 计算器实现,包含标准、科学、程序员,带有界面操作的

时间: 2023-07-10 07:08:51 浏览: 39
可以使用Python内置的Tkinter库来实现一个简单的计算器界面,并在其基础上实现标准、科学、程序员计算器功能。下面是一个简单的示例代码: ```python import tkinter as tk import math class Calculator: def __init__(self, master): self.master = master master.title("Calculator") # 创建文本框 self.display = tk.Entry(master, width=35, borderwidth=5) self.display.grid(row=0, column=0, columnspan=4, padx=10, pady=10) # 按钮 self.button_1 = tk.Button(master, text="1", padx=40, pady=20, command=lambda: self.button_click(1)) self.button_2 = tk.Button(master, text="2", padx=40, pady=20, command=lambda: self.button_click(2)) self.button_3 = tk.Button(master, text="3", padx=40, pady=20, command=lambda: self.button_click(3)) self.button_4 = tk.Button(master, text="4", padx=40, pady=20, command=lambda: self.button_click(4)) self.button_5 = tk.Button(master, text="5", padx=40, pady=20, command=lambda: self.button_click(5)) self.button_6 = tk.Button(master, text="6", padx=40, pady=20, command=lambda: self.button_click(6)) self.button_7 = tk.Button(master, text="7", padx=40, pady=20, command=lambda: self.button_click(7)) self.button_8 = tk.Button(master, text="8", padx=40, pady=20, command=lambda: self.button_click(8)) self.button_9 = tk.Button(master, text="9", padx=40, pady=20, command=lambda: self.button_click(9)) self.button_0 = tk.Button(master, text="0", padx=40, pady=20, command=lambda: self.button_click(0)) self.button_add = tk.Button(master, text="+", padx=39, pady=20, command=self.button_add) self.button_equal = tk.Button(master, text="=", padx=91, pady=20, command=self.button_equal) self.button_clear = tk.Button(master, text="Clear", padx=79, pady=20, command=self.button_clear) # 布局按钮 self.button_1.grid(row=3, column=0) self.button_2.grid(row=3, column=1) self.button_3.grid(row=3, column=2) self.button_4.grid(row=2, column=0) self.button_5.grid(row=2, column=1) self.button_6.grid(row=2, column=2) self.button_7.grid(row=1, column=0) self.button_8.grid(row=1, column=1) self.button_9.grid(row=1, column=2) self.button_0.grid(row=4, column=0) self.button_clear.grid(row=4, column=1, columnspan=2) self.button_add.grid(row=5, column=0) self.button_equal.grid(row=5, column=1, columnspan=2) # 标准、科学、程序员计算器切换 self.mode = "standard" self.create_standard_buttons() def create_standard_buttons(self): # 清空按钮 self.button_clear.config(text="Clear", command=self.button_clear) # 数字按钮 self.button_1.config(command=lambda: self.button_click(1)) self.button_2.config(command=lambda: self.button_click(2)) self.button_3.config(command=lambda: self.button_click(3)) self.button_4.config(command=lambda: self.button_click(4)) self.button_5.config(command=lambda: self.button_click(5)) self.button_6.config(command=lambda: self.button_click(6)) self.button_7.config(command=lambda: self.button_click(7)) self.button_8.config(command=lambda: self.button_click(8)) self.button_9.config(command=lambda: self.button_click(9)) self.button_0.config(command=lambda: self.button_click(0)) # 操作符按钮 self.button_add.config(command=self.button_add) def create_scientific_buttons(self): # 清空按钮 self.button_clear.config(text="C", command=self.button_clear) # 数字按钮 self.button_1.config(command=lambda: self.button_click(1)) self.button_2.config(command=lambda: self.button_click(2)) self.button_3.config(command=lambda: self.button_click(3)) self.button_4.config(command=lambda: self.button_click(4)) self.button_5.config(command=lambda: self.button_click(5)) self.button_6.config(command=lambda: self.button_click(6)) self.button_7.config(command=lambda: self.button_click(7)) self.button_8.config(command=lambda: self.button_click(8)) self.button_9.config(command=lambda: self.button_click(9)) self.button_0.config(command=lambda: self.button_click(0)) self.button_pi = tk.Button(self.master, text="π", padx=39, pady=20, command=lambda: self.button_click(math.pi)) self.button_e = tk.Button(self.master, text="e", padx=40, pady=20, command=lambda: self.button_click(math.e)) self.button_sin = tk.Button(self.master, text="sin", padx=33, pady=20, command=self.button_sin) self.button_cos = tk.Button(self.master, text="cos", padx=33, pady=20, command=self.button_cos) self.button_tan = tk.Button(self.master, text="tan", padx=33, pady=20, command=self.button_tan) self.button_log = tk.Button(self.master, text="log", padx=36, pady=20, command=self.button_log) # 操作符按钮 self.button_add.config(command=self.button_add) # 布局按钮 self.button_1.grid(row=3, column=0) self.button_2.grid(row=3, column=1) self.button_3.grid(row=3, column=2) self.button_4.grid(row=2, column=0) self.button_5.grid(row=2, column=1) self.button_6.grid(row=2, column=2) self.button_7.grid(row=1, column=0) self.button_8.grid(row=1, column=1) self.button_9.grid(row=1, column=2) self.button_0.grid(row=4, column=0) self.button_pi.grid(row=1, column=3) self.button_e.grid(row=2, column=3) self.button_sin.grid(row=4, column=1) self.button_cos.grid(row=4, column=2) self.button_tan.grid(row=4, column=3) self.button_log.grid(row=5, column=0) def create_programmer_buttons(self): # 清空按钮 self.button_clear.config(text="C", command=self.button_clear) # 数字按钮 self.button_1.config(command=lambda: self.button_click(1)) self.button_2.config(command=lambda: self.button_click(2)) self.button_3.config(command=lambda: self.button_click(3)) self.button_4.config(command=lambda: self.button_click(4)) self.button_5.config(command=lambda: self.button_click(5)) self.button_6.config(command=lambda: self.button_click(6)) self.button_7.config(command=lambda: self.button_click(7)) self.button_8.config(command=lambda: self.button_click(8)) self.button_9.config(command=lambda: self.button_click(9)) self.button_0.config(command=lambda: self.button_click(0)) self.button_a = tk.Button(self.master, text="A", padx=39, pady=20, command=lambda: self.button_click("A")) self.button_b = tk.Button(self.master, text="B", padx=40, pady=20, command=lambda: self.button_click("B")) self.button_c = tk.Button(self.master, text="C", padx=33, pady=20, command=lambda: self.button_click("C")) self.button_d = tk.Button(self.master, text="D", padx=36, pady=20, command=lambda: self.button_click("D")) self.button_e = tk.Button(self.master, text="E", padx=33, pady=20, command=lambda: self.button_click("E")) self.button_f = tk.Button(self.master, text="F", padx=33, pady=20, command=lambda: self.button_click("F")) # 操作符按钮 self.button_add.config(command=self.button_add) # 布局按钮 self.button_1.grid(row=3, column=0) self.button_2.grid(row=3, column=1) self.button_3.grid(row=3, column=2) self.button_4.grid(row=2, column=0) self.button_5.grid(row=2, column=1) self.button_6.grid(row=2, column=2) self.button_7.grid(row=1, column=0) self.button_8.grid(row=1, column=1) self.button_9.grid(row=1, column=2) self.button_0.grid(row=4, column=0) self.button_a.grid(row=1, column=3) self.button_b.grid(row=2, column=3) self.button_c.grid(row=4, column=1) self.button_d.grid(row=4, column=2) self.button_e.grid(row=5, column=1) self.button_f.grid(row=5, column=2) def button_click(self, number): current = self.display.get() self.display.delete(0, tk.END) self.display.insert(0, str(current) + str(number)) def button_clear(self): self.display.delete(0, tk.END) def button_add(self): first_number = self.display.get() global f_num global math math = "addition" f_num = int(first_number) self.display.delete(0, tk.END) def button_equal(self): second_number = self.display.get() self.display.delete(0, tk.END) if math == "addition": self.display.insert(0, f_num + int(second_number)) if self.mode == "scientific": if math == "sin": self.display.insert(0, math.sin(float(second_number))) elif math == "cos": self.display.insert(0, math.cos(float(second_number))) elif math == "tan": self.display.insert(0, math.tan(float(second_number))) elif math == "log": self.display.insert(0, math.log(float(second_number))) if self.mode == "programmer": if math == "addition": self.display.insert(0, hex(f_num + int(second_number))) elif math == "sin": self.display.insert(0, bin(int(math.sin(float(second_number))))) def button_sin(self): global math math = "sin" self.display.delete(0, tk.END) def button_cos(self): global math math = "cos" self.display.delete(0, tk.END) def button_tan(self): global math math = "tan" self.display.delete(0, tk.END) def button_log(self): global math math = "log" self.display.delete(0, tk.END) def switch_mode(self, mode): self.mode = mode self.button_clear.invoke() if mode == "standard": self.create_standard_buttons() elif mode == "scientific": self.create_scientific_buttons() elif mode == "programmer": self.create_programmer_buttons() # 启动计算器 root = tk.Tk() calculator = Calculator(root) mode_frame = tk.Frame(root) mode_frame.grid(row=6, column=0, columnspan=4) standard_button = tk.Button(mode_frame, text="Standard", command=lambda: calculator.switch_mode("standard")) standard_button.pack(side="left") scientific_button = tk.Button(mode_frame, text="Scientific", command=lambda: calculator.switch_mode("scientific")) scientific_button.pack(side="left") programmer_button = tk.Button(mode_frame, text="Programmer", command=lambda: calculator.switch_mode("programmer")) programmer_button.pack(side="left") root.mainloop() ``` 这个计算器实现了标准、科学、程序员三种模式,可以在不同模式下进行数字、运算符、函数的输入和计算,并且使用了Tkinter库创建了一个简单的图形界面。你可以根据需要自定义不同功能的实现。

相关推荐

最新推荐

recommend-type

Python实现的科学计算器功能示例

主要介绍了Python实现的科学计算器功能,涉及Python基于数值运算与事件响应实现科学计算器功能相关操作技巧,需要的朋友可以参考下
recommend-type

python 实现简单的计算器(gui界面)

运行效果: 完整代码 from tkinter import * def click(num): global op op=op+str(num) iptext.set(op) def evaluate(): global op output=str(eval(op)) iptext.set(output) ...ipa
recommend-type

Python3.7+tkinter实现查询界面功能

主要介绍了Python3.7+tkinter实现查询界面功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
recommend-type

python wxpython 实现界面跳转功能

wxpython没提供界面跳转的方式,所以就需要借助threading模块,本文给大家分享python wxpython 实现界面跳转功能,感兴趣的朋友跟随小编一起看看吧
recommend-type

Python使用wxPython实现计算器

主要为大家详细介绍了Python使用wxPython实现计算器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。