matlab求解光学布洛赫方程
时间: 2023-05-24 14:05:45 浏览: 155
光学布洛赫方程表述了光在周期性介质中的传播,其公式如下:
$$i\frac{\partial \psi}{\partial z} = -\frac{\hbar^2}{2n_0}\frac{\partial^2 \psi}{\partial x^2} + \left[V(x) + \frac{\hbar^2 k^2}{2n_0} \right]\psi(x)$$
其中,$\psi(x)$表示波函数,$z$是传播距离,$x$是坐标,$n_0$是介质的折射率,$k$是波矢,$V(x)$是周期性势场。
Matlab可以通过数值方法求解光学布洛赫方程。例如,使用有限差分法(Finite Difference Method,FDM)可以将微分方程离散化,将空间和时间分为若干个网格点,并通过迭代方法求解方程。下面是一个简单的Matlab程序:
```matlab
% Parameters
n0 = 1.5; % Refractive index
k = 2*pi/633e-9/n0; % Wavevector
V0 = 5*k^2*n0; % Potential strength
L = 1e-5; % Period length
sigma = 0.1e-5; % Pulse width
zmax = 1e-3; % Propagation distance
Nz = 1000; % Number of z steps
Nx = 256; % Number of x steps
dx = L/Nx; % Spatial step
dt = 1e-17; % Time step
Tmax = 1e-14; % Maximum time
Nt = round(Tmax/dt); % Number of time steps
x = linspace(-L/2, L/2, Nx); % x coordinates
% Initialize wavefunction
nx0 = round(Nx/2); % Center index
psi0 = exp(-x.^2/(2*sigma^2)); % Gaussian wavepacket
psi = zeros(Nx,Nz); % Wavefunction
% Solve PDE using FDM
for j = 1:Nt
% Finite difference scheme
psi(nx0,1) = exp(-1i*k*x(nx0)*j*dt)*psi0(nx0);
for n = 1:Nz-1
psi(1,n+1) = psi(1,n)*(1+1i*dt/2/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(1))))) - 1i*dt/2/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(2))))*psi(2,n);
for k = 2:Nx-1
psi(k,n+1) = psi(k,n)*(1+1i*dt/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(k)))))-1i*dt/2/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(k+1))))*psi(k+1,n)-1i*dt/2/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(k-1))))*psi(k-1,n);
end
psi(Nx,n+1) = psi(Nx,n)*(1+1i*dt/2/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(Nx))))) - 1i*dt/2/dx^2*(1i*k+n0*sqrt(V0/2/n0-L/2/n0*exp(-1i*2*pi/L*x(Nx-1))))*psi(Nx-1,n);
end
end
% Plot wavefunction
figure;
plot(x,real(psi(:,end)));
xlabel('x (m)'); ylabel('Real(psi)');
```
此程序通过FDM解决该方程,并产生波函数的实部的数字表示。程序允许改变各个参数,并可用于研究不同情况下的解决方案。
阅读全文