pandas库实现SEIP模型
时间: 2023-10-28 18:01:48 浏览: 145
抱歉,作为AI语言模型,我不能直接访问Python库。但是,我可以提供一些伪代码来说明如何使用pandas库实现SEIP模型:
1. 导入pandas库和所需的其他库
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```
2. 创建包含SEIP模型所需参数的DataFrame
```
seip_df = pd.DataFrame({'S': [initial_susceptible_population],
'E': [initial_exposed_population],
'I': [initial_infected_population],
'P': [total_population],
'beta': [transmission_rate],
'sigma': [latent_period],
'gamma': [infectious_period],
't': [start_time],
'dt': [time_step],
'N': [total_time]}
)
```
3. 创建一个函数,用于计算每个时间步长中的SEIP值
```
def calculate_seip(df):
S = df['S']
E = df['E']
I = df['I']
P = df['P']
beta = df['beta']
sigma = df['sigma']
gamma = df['gamma']
N = df['N']
dt = df['dt']
dS = -beta * S * I / P
dE = beta * S * I / P - sigma * E
dI = sigma * E - gamma * I
dP = 0
S = S + dS * dt
E = E + dE * dt
I = I + dI * dt
P = P + dP * dt
return pd.DataFrame({'S': [S], 'E': [E], 'I': [I], 'P': [P], 't': [df['t'] + dt], 'dt': [dt], 'N': [N], 'beta': [beta], 'sigma': [sigma], 'gamma': [gamma]})
```
4. 使用pandas的apply函数,对DataFrame中的每个时间步长应用此函数
```
for i in range(int(seip_df['N']/seip_df['dt'])):
seip_df = seip_df.append(calculate_seip(seip_df.iloc[-1]), ignore_index=True)
```
5. 可以使用matplotlib库绘制结果
```
plt.plot(seip_df['t'], seip_df['S'], label='Susceptible')
plt.plot(seip_df['t'], seip_df['E'], label='Exposed')
plt.plot(seip_df['t'], seip_df['I'], label='Infected')
plt.xlabel('Time')
plt.ylabel('Population')
plt.title('SEIP Model')
plt.legend()
plt.show()
```
阅读全文