LL_ADC_Enable(ADC1); /* Poll for ADC ready to convert / #if (USE_TIMEOUT == 1) Timeout = ADC_ENABLE_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT */请逐行解释代码

时间: 2024-04-07 09:28:32 浏览: 12
这段代码是关于STM32的ADC模块的操作,逐行解释如下: 1. `LL_ADC_Enable(ADC1);`: 启用ADC1模块,使其准备好转换。 2. `#if (USE_TIMEOUT == 1) Timeout = ADC_ENABLE_TIMEOUT_MS; #endif`: 如果使用了超时设置,就将超时时间设置为ADC_ENABLE_TIMEOUT_MS,即启用ADC的超时时间。 3. `while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0) {`: 当ADC1模块还未准备好进行转换时,执行循环体内的操作。 4. `#if (USE_TIMEOUT == 1)`: 如果使用了超时设置,就检查超时时间是否已经耗尽。 5. `if (LL_SYSTICK_IsActiveCounterFlag()) {`: 如果Systick计数器已经到达计数周期,则说明已经过了1毫秒,可以将超时时间减1。 6. `if (Timeout-- == 0) {`: 如果超时时间已经耗尽,执行错误处理函数。 7. `Error_Handler();`: 错误处理函数,根据实际应用情况进行编写。 8. `#endif`: 结束超时设置的判断。 9. `LL_ADC_IsActiveFlag_ADRDY(ADC1)`: 检查ADC1模块是否准备好进行转换,如果准备好了,返回1,否则返回0。 因此,这段代码的作用是等待ADC1模块准备好进行转换,并且可以设置超时时间以防止死循环。
相关问题

void ADC_Activate(void) { __IO uint32_t wait_loop_index = 0U; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0U; /* Variable used for timeout management / #endif / USE_TIMEOUT / /## Operation on ADC hierarchical scope: ADC instance #####################/ / Note: Hardware constraint (refer to description of the functions / / below): / / On this STM32 series, setting of these features is conditioned to / / ADC state: / / ADC must be disabled. / / Note: In this example, all these checks are not necessary but are / / implemented anyway to show the best practice usages / / corresponding to reference manual procedure. / / Software can be optimized by removing some of these checks, if / / they are not relevant considering previous settings and actions / / in user application. / if (LL_ADC_IsEnabled(ADC1) == 0) { / Run ADC self calibration / LL_ADC_StartCalibration(ADC1, LL_ADC_CALIB_OFFSET); / Poll for ADC effectively calibrated / #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT / } / Delay between ADC end of calibration and ADC enable. / / Note: Variable divided by 2 to compensate partially / / CPU processing cycles (depends on compilation optimization). / wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } / Enable ADC / LL_ADC_Enable(ADC1); / Poll for ADC ready to convert / #if (USE_TIMEOUT == 1) Timeout = ADC_ENABLE_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT / } / Note: ADC flag ADRDY is not cleared here to be able to check ADC / / status afterwards. / / This flag should be cleared at ADC Deactivation, before a new / / ADC activation, using function "LL_ADC_ClearFlag_ADRDY()". */ }请逐行解释代码

这是一段STM32的C语言代码,用于激活ADC(模数转换器)并进行自校准。下面对每行代码进行逐行解释: ```c void ADC_Activate(void) { ``` 这是一个函数的定义,函数名为ADC_Activate,不带参数,返回类型为void(即无返回值)。 ```c __IO uint32_t wait_loop_index = 0U; ``` 定义一个无符号32位整数类型的变量wait_loop_index,并初始化为0。 ```c #if (USE_TIMEOUT == 1) uint32_t Timeout = 0U; ``` 如果USE_TIMEOUT宏定义为1,则定义一个无符号32位整数类型的变量Timeout,并初始化为0。 ```c #endif /* USE_TIMEOUT */ ``` 结束USE_TIMEOUT的条件编译。 ```c if (LL_ADC_IsEnabled(ADC1) == 0) { ``` 如果ADC1没有被启用,则执行以下代码。 ```c LL_ADC_StartCalibration(ADC1, LL_ADC_CALIB_OFFSET); ``` 启动ADC1的自校准,使用偏移校准模式。 ```c #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif /* USE_TIMEOUT */ ``` 如果USE_TIMEOUT宏定义为1,则将Timeout变量设置为ADC自校准的超时时间。 ```c while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { ``` 等待ADC1的自校准完成。 ```c #if (USE_TIMEOUT == 1) if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { Error_Handler(); } } #endif /* USE_TIMEOUT */ ``` 如果USE_TIMEOUT宏定义为1,则检查系统计时器的计数标志位,如果超时则调用Error_Handler函数。 ```c wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } ``` 为了减少CPU处理周期的影响,等待一段时间再启用ADC1。ADC_DELAY_CALIB_ENABLE_CPU_CYCLES是一个宏定义,表示需要等待的CPU周期数。 ```c LL_ADC_Enable(ADC1); ``` 启用ADC1。 ```c #if (USE_TIMEOUT == 1) Timeout = ADC_ENABLE_TIMEOUT_MS; #endif /* USE_TIMEOUT */ ``` 如果USE_TIMEOUT宏定义为1,则将Timeout变量设置为ADC启用的超时时间。 ```c while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0) { ``` 等待ADC1准备好进行转换。 ```c #if (USE_TIMEOUT == 1) if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { Error_Handler(); } } #endif /* USE_TIMEOUT */ ``` 如果USE_TIMEOUT宏定义为1,则检查系统计时器的计数标志位,如果超时则调用Error_Handler函数。 ```c } ``` 函数结束。

retv = event_poll(&evnt, 1, time);

这是一个调用 event_poll 函数的语句,用于等待事件的发生。event_poll 函数是一个封装了 epoll_wait 的函数,它的作用是等待事件的发生,并将发生的事件存储在一个 event_t 类型的数组中。该函数的定义如下: ``` int event_poll(event_t *events, int max_events, int timeout); ``` 其中,events 是一个指向 event_t 类型数组的指针,用于存储发生的事件;max_events 是 events 数组的最大长度;timeout 是等待事件的超时时间,单位是毫秒。该函数返回等待事件发生的数量,如果出现错误则返回 -1。 在上述语句中,evnt 是一个 event_t 类型的数组,长度为 1,用于存储等待发生的事件。time 是等待事件的超时时间,单位是毫秒。该语句的返回值 retv 是等待事件发生的数量,如果在超时时间内没有事件发生,则返回 0。

相关推荐

static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) { struct nvme_dev *dev = affd->priv; unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; if (!nrirqs) { nrirqs = 1; nr_read_queues = 0; } else if (nrirqs == 1 || !nr_write_queues) { nr_read_queues = 0; } else if (nr_write_queues >= nrirqs) { nr_read_queues = 1; } else { nr_read_queues = nrirqs - nr_write_queues; } dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; affd->set_size[HCTX_TYPE_READ] = nr_read_queues; affd->nr_sets = nr_read_queues ? 2 : 1; }static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct irq_affinity affd = { //ָ���ж��׺��Եļ��㷽���Ͳ��� .pre_vectors = 1, .calc_sets = nvme_set_irq_affinity, //nvme_calc_irq_sets, .priv = dev, }; unsigned int irq_queues, poll_queues; poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); dev->io_queues[HCTX_TYPE_POLL] = poll_queues; dev->io_queues[HCTX_TYPE_DEFAULT] = 1; dev->io_queues[HCTX_TYPE_READ] = 0; irq_queues = 1; if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) irq_queues += (nr_io_queues - poll_queues); return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); } 在 Linux 5.17.12 内核版本中,如何修改 pci_alloc_irq_vectors_affinity() 函数的 affinity_hint 参数来绑定 NVMe 驱动的所有 I/O 队列到同一 CPU 核心上。代码展示

简析代码:void SJF(PCB pro[],int num) { int time,done_time; float sum_T_time,sum_QT_time; int i,pronum; PCBQueue *ready_queue; PCB *curpro,pro1[MAXSIZE]; printf("\n\t\t\t\t\t短作业优先算法进程调度模拟\n\n"); printf("\t————————————————————————————————————————————————\n"); sortWithEnterTime(pro, num); ready_queue = (PCBQueue*)malloc(sizeof(PCBQueue)); if(!ready_queue) { printf("分配就绪队列头结点空间失败!"); exit(1); } Queueinit(ready_queue); EnterQueueOfRuntime(ready_queue,&pro[0]); time = pro[0].arrivetime; pronum = 1; //记录当前的进程 sum_T_time = 0, sum_QT_time = 0; i=0; while(ready_queue->size>0) { curpro=poll(ready_queue);//就绪队列中的队头进程进入CPU中运行 if(time<curpro->arrivetime) { //如果该进程与上一次运行的进程结束时间之间有间隔,则将CPU运行时间变为该进程到达时间 time=curpro->arrivetime; } done_time=time+curpro->running_time; curpro->start_time=time; curpro->done_time=done_time; curpro->zztime = done_time - curpro->arrivetime;//周转时间 curpro->dqzztime = curpro->zztime / curpro->running_time;//带权周转时间 //打印正在运行的进程 PrintRunningprogram(curpro); //将curpro的信息复制到pro1[i]中 CopyProgram(&pro1[i],curpro); i++; sum_T_time += curpro->zztime; sum_QT_time += curpro->dqzztime; while(pronum<num) { //将在CPU中的进程运行的时间内到达的进程放入就绪队列 if(pro[pronum].arrivetime<=done_time) { EnterQueueOfRuntime(ready_queue,&pro[pronum]); pronum++; } else { break; } } //打印就绪队列 PrintReadyqueue(ready_queue); time=done_time; if(ready_queue->size==0&&pronum<num) { //防止出现前一个进程执行完到下一个进程到达之间无进程进入 EnterQueueOfRuntime(ready_queue,&pro[pronum]); pronum++; } } PrintSortOfRunningprogram(pro1,num); printf("\t平均周转时间为:%.2f\n", sum_T_time / num); printf("\t平均带权周转时间为:%.2f\n",sum_QT_time/num); }

static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) { struct nvme_dev *dev = affd->priv; unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; if (!nrirqs) { nrirqs = 1; nr_read_queues = 0; } else if (nrirqs == 1 || !nr_write_queues) { nr_read_queues = 0; } else if (nr_write_queues >= nrirqs) { nr_read_queues = 1; } else { nr_read_queues = nrirqs - nr_write_queues; } dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; affd->set_size[HCTX_TYPE_READ] = nr_read_queues; affd->nr_sets = nr_read_queues ? 2 : 1; }static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct irq_affinity affd = { //ָ���ж��׺��Եļ��㷽���Ͳ��� .pre_vectors = 1, .calc_sets = nvme_set_irq_affinity, //nvme_calc_irq_sets, .priv = dev, }; unsigned int irq_queues, poll_queues; poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); dev->io_queues[HCTX_TYPE_POLL] = poll_queues; dev->io_queues[HCTX_TYPE_DEFAULT] = 1; dev->io_queues[HCTX_TYPE_READ] = 0; irq_queues = 1; if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) irq_queues += (nr_io_queues - poll_queues); return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); } 在 Linux 5.17.12 内核版本中,可以通过修改 pci_alloc_irq_vectors_affinity() 函数的 affinity_hint 参数来绑定 NVMe 驱动的所有 I/O 队列到同一 CPU 核心上。

最新推荐

recommend-type

linux内核select/poll,epoll实现与区别

主要介绍了linux内核select/poll,epoll实现与区别,需要的朋友可以参考下
recommend-type

2024年设备创新与市场拓展成果.pptx

行业报告
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

从键盘输入一段英文字符串,其中包含多个字母‘h',请编写程序利用正则表达式,将英文字符串中的’h'全部改为‘H’

好的,我可以帮您解决这个问题。 您可以使用 Python 编写一个程序来实现这个功能。具体步骤如下: 1. 首先导入 re 模块,这个模块是 Python 中用于处理正则表达式的模块。 2. 然后定义一个包含英文字符串的变量,例如: text = "This is a string containing multiple h's." 3. 接下来,使用 re.sub() 方法来进行替换操作。re.sub() 方法的第一个参数是正则表达式,第二个参数是替换的字符或字符串,第三个参数是被替换的字符串。在这个例子里,我们需要将所有的小写字母 h 替换成大写字母 H,所以正则表达式可以写成
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

MySQL 什么情况下不会使用到索引

MySQL 不会使用索引的情况主要包括: 1. 查询的数据量太少,全表扫描比使用索引更快; 2. 使用了函数或表达式对索引字段进行运算; 3. 对索引字段进行了类型转换; 4. 索引列上出现了函数或者运算符; 5. 查询语句中使用了 OR 连接多个条件; 6. 查询条件中有 NULL 值; 7. 数据表的数据量过于庞大,索引失去了优势。