将adaboost应用于逻辑斯蒂回归 python实现
时间: 2023-06-30 14:09:43 浏览: 111
基于Python实现的逻辑回归模型.zip
Adaboost可以用于逻辑斯蒂回归的分类问题中,具体实现步骤如下:
1.导入需要的库和数据集
```python
import numpy as np
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
# 创建一个二分类的数据集
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42)
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
2. 初始化Adaboost分类器和逻辑斯蒂回归分类器
```python
# 初始化Adaboost分类器
ada = AdaBoostClassifier(n_estimators=10, random_state=42)
# 初始化逻辑斯蒂回归分类器
logistic = LogisticRegression(random_state=42)
```
3. 将逻辑斯蒂回归分类器添加到Adaboost分类器中
```python
ada.fit(X_train, y_train)
ada.estimators_.append(logistic)
ada.n_estimators_ += 1
```
4. 训练Adaboost分类器并进行预测
```python
# 训练Adaboost分类器
ada.fit(X_train, y_train)
# 对测试集进行预测
y_pred = ada.predict(X_test)
```
完整代码如下:
```python
import numpy as np
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
# 创建一个二分类的数据集
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42)
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 初始化Adaboost分类器和逻辑斯蒂回归分类器
ada = AdaBoostClassifier(n_estimators=10, random_state=42)
logistic = LogisticRegression(random_state=42)
# 将逻辑斯蒂回归分类器添加到Adaboost分类器中
ada.fit(X_train, y_train)
ada.estimators_.append(logistic)
ada.n_estimators_ += 1
# 训练Adaboost分类器并进行预测
ada.fit(X_train, y_train)
y_pred = ada.predict(X_test)
# 输出模型的准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
```
阅读全文