import seaborn as sns sns.heatmap(data_heat,annot=True)
时间: 2024-05-26 13:14:10 浏览: 200
这段代码使用Seaborn库中的heatmap函数绘制热力图,其中data_heat是一个二维数组或DataFrame对象,annot=True表示在热力图上显示数值标签。具体来说,热力图是一种可视化方式,用颜色编码矩形格中的数值大小,通常用于展示数据集中不同变量之间的相关性。在这个例子中,热力图可能展示了一个数据集中不同变量之间的相关性矩阵。
相关问题
import seaborn as sns corrmat = df.corr() top_corr_features = corrmat.index plt.figure(figsize=(16,16)) #plot heat map g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn") plt.show() sns.set_style('whitegrid') sns.countplot(x='target',data=df,palette='RdBu_r') plt.show() dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs','restecg', 'exang', 'slope', 'ca', 'thal']) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler standardScaler = StandardScaler() columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale]) dataset.head() y = dataset['target'] X = dataset.drop(['target'], axis=1) from sklearn.model_selection import cross_val_score knn_scores = [] for k in range(1, 21): knn_classifier = KNeighborsClassifier(n_neighbors=k) score = cross_val_score(knn_classifier, X, y, cv=10) knn_scores.append(score.mean()) plt.plot([k for k in range(1, 21)], knn_scores, color='red') for i in range(1, 21): plt.text(i, knn_scores[i - 1], (i, knn_scores[i - 1])) plt.xticks([i for i in range(1, 21)]) plt.xlabel('Number of Neighbors (K)') plt.ylabel('Scores') plt.title('K Neighbors Classifier scores for different K values') plt.show() knn_classifier = KNeighborsClassifier(n_neighbors = 12) score=cross_val_score(knn_classifier,X,y,cv=10) score.mean() from sklearn.ensemble import RandomForestClassifier randomforest_classifier= RandomForestClassifier(n_estimators=10) score=cross_val_score(randomforest_classifier,X,y,cv=10) score.mean()的roc曲线的代码
以下是绘制ROC曲线的代码:
```
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import StratifiedKFold
cv = StratifiedKFold(n_splits=10)
# KNN Classifier ROC Curve
knn_classifier = KNeighborsClassifier(n_neighbors=12)
knn_tprs = []
knn_aucs = []
mean_fpr = np.linspace(0, 1, 100)
fig, ax = plt.subplots()
for i, (train, test) in enumerate(cv.split(X, y)):
knn_classifier.fit(X.iloc[train], y.iloc[train])
knn_proba = knn_classifier.predict_proba(X.iloc[test])[:, 1]
knn_fpr, knn_tpr, knn_thresholds = roc_curve(y.iloc[test], knn_proba)
knn_tprs.append(np.interp(mean_fpr, knn_fpr, knn_tpr))
knn_tprs[-1][0] = 0.0
knn_roc_auc = auc(knn_fpr, knn_tpr)
knn_aucs.append(knn_roc_auc)
ax.plot(knn_fpr, knn_tpr, lw=1, alpha=0.3,
label='ROC fold %d (AUC = %0.2f)' % (i+1, knn_roc_auc))
# Random Forest Classifier ROC Curve
randomforest_classifier = RandomForestClassifier(n_estimators=10)
rf_tprs = []
rf_aucs = []
for i, (train, test) in enumerate(cv.split(X, y)):
randomforest_classifier.fit(X.iloc[train], y.iloc[train])
rf_proba = randomforest_classifier.predict_proba(X.iloc[test])[:, 1]
rf_fpr, rf_tpr, rf_thresholds = roc_curve(y.iloc[test], rf_proba)
rf_tprs.append(np.interp(mean_fpr, rf_fpr, rf_tpr))
rf_tprs[-1][0] = 0.0
rf_roc_auc = auc(rf_fpr, rf_tpr)
rf_aucs.append(rf_roc_auc)
ax.plot(rf_fpr, rf_tpr, lw=1, alpha=0.3,
label='ROC fold %d (AUC = %0.2f)' % (i+1, rf_roc_auc))
# Plot the mean ROC curves
ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Chance', alpha=.8)
knn_mean_tpr = np.mean(knn_tprs, axis=0)
knn_mean_tpr[-1] = 1.0
knn_mean_auc = auc(mean_fpr, knn_mean_tpr)
std_auc = np.std(knn_aucs)
ax.plot(mean_fpr, knn_mean_tpr, color='b',
label=r'KNN Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (knn_mean_auc, std_auc),
lw=2, alpha=.8)
rf_mean_tpr = np.mean(rf_tprs, axis=0)
rf_mean_tpr[-1] = 1.0
rf_mean_auc = auc(mean_fpr, rf_mean_tpr)
std_auc = np.std(rf_aucs)
ax.plot(mean_fpr, rf_mean_tpr, color='g',
label=r'RF Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (rf_mean_auc, std_auc),
lw=2, alpha=.8)
# Set the plot parameters
ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],
title="Receiver operating characteristic example")
ax.legend(loc="lower right")
plt.show()
```
这段代码将绘制KNN分类器和随机森林分类器的ROC曲线,以及它们的平均曲线和AUC值。您需要将其与您的数据集和分类器参数一起使用。
如何使用Python的Seaborn库和GUI技术,针对某地区的地震数据创建一个交互式的热力图?
要使用Seaborn库和GUI技术创建一个交互式的热力图,可以结合Python编程语言、Matplotlib库以及Tkinter来实现。以下是一步步操作指南:
参考资源链接:[Python实现地震数据可视化的研究](https://wenku.csdn.net/doc/7rryrixq0s?spm=1055.2569.3001.10343)
首先,需要安装和导入必要的库:
```python
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tkinter import Tk, Label, Entry, Button,Canvas
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
```
假设你已经有了包含地震数据的CSV文件,你可以使用Pandas读取数据:
```python
df = pd.read_csv('earthquake_data.csv')
df['date'] = pd.to_datetime(df['date']) # 确保日期列是日期时间格式
```
使用Seaborn创建热力图,显示特定地区在特定时间段内地震发生的频率:
```python
plt.figure(figsize=(10, 6))
heat_map = sns.heatmap(df[(df['region'] == '指定地区') & (df['date'] >= '开始日期') & (df['date'] <= '结束日期')].groupby(['date', 'magnitude']).size().unstack().fillna(0), annot=True, cmap='viridis')
plt.title('地震发生频率热力图')
```
使用Tkinter构建GUI界面,让用户可以输入地区名称和时间范围:
```python
def show_heatmap():
# 读取用户输入
region = entry_region.get()
start_date = entry_start_date.get()
end_date = entry_end_date.get()
# 创建新图表
plt.figure(figsize=(10, 6))
heat_map = sns.heatmap(df[(df['region'] == region) & (df['date'] >= start_date) & (df['date'] <= end_date)].groupby(['date', 'magnitude']).size().unstack().fillna(0), annot=True, cmap='viridis')
plt.title('地震发生频率热力图')
# 在Tkinter窗口中显示图表
canvas = FigureCanvasTkAgg(plt.gcf(), master=root) # A tk.DrawingArea.
canvas.draw()
canvas.get_tk_widget().pack(side=***, fill=tkinter.BOTH, expand=1)
# 创建主窗口
root = Tk()
root.title('地震数据可视化')
# 创建输入区域
Label(root, text=
参考资源链接:[Python实现地震数据可视化的研究](https://wenku.csdn.net/doc/7rryrixq0s?spm=1055.2569.3001.10343)
阅读全文