麻雀优化算法优化LSTM神经网络参数:units、batch size、learning rate 代码示例
时间: 2024-01-25 17:02:18 浏览: 70
以下是使用麻雀优化算法优化LSTM神经网络参数的伪代码示例:
```
import numpy as np
import random
# 定义LSTM神经网络模型
class LSTM:
def __init__(self, units, batch_size, learning_rate):
self.units = units
self.batch_size = batch_size
self.learning_rate = learning_rate
# 神经网络参数初始化
# 神经网络训练函数
def train(self, X, y):
# 神经网络训练代码
# 神经网络预测函数
def predict(self, X):
# 神经网络预测代码
# 定义麻雀类
class Sparrow:
def __init__(self, units, batch_size, learning_rate, fitness):
self.units = units
self.batch_size = batch_size
self.learning_rate = learning_rate
self.fitness = fitness
# 定义麻雀优化算法函数
def sparrow_optimization(X, y, max_iter, n_sparrows, alpha):
# 初始化麻雀群体
sparrows = []
for i in range(n_sparrows):
units = random.randint(50, 200)
batch_size = random.randint(10, 50)
learning_rate = random.uniform(0.001, 0.1)
lstm = LSTM(units, batch_size, learning_rate)
fitness = lstm.train(X, y)
sparrow = Sparrow(units, batch_size, learning_rate, fitness)
sparrows.append(sparrow)
# 迭代优化
for iter in range(max_iter):
# 麻雀位置和速度更新
for i in range(n_sparrows):
r1 = random.uniform(0, 1)
r2 = random.uniform(0, 1)
r3 = random.uniform(0, 1)
sparrows[i].units = sparrows[i].units + alpha * (r1 * sparrows[i].units - r2 * sparrows[i].units) + r3 * (sparrows[i].fitness - sparrows[i].fitness)
sparrows[i].batch_size = sparrows[i].batch_size + alpha * (r1 * sparrows[i].batch_size - r2 * sparrows[i].batch_size) + r3 * (sparrows[i].fitness - sparrows[i].fitness)
sparrows[i].learning_rate = sparrows[i].learning_rate + alpha * (r1 * sparrows[i].learning_rate - r2 * sparrows[i].learning_rate) + r3 * (sparrows[i].fitness - sparrows[i].fitness)
lstm = LSTM(sparrows[i].units, sparrows[i].batch_size, sparrows[i].learning_rate)
sparrows[i].fitness = lstm.train(X, y)
# 麻雀适应度排序
sparrows.sort(key=lambda sparrow: sparrow.fitness)
# 选择最优麻雀
best_sparrow = sparrows[0]
# 输出迭代信息
print("Iteration {}: Best fitness = {}".format(iter+1, best_sparrow.fitness))
return best_sparrow.units, best_sparrow.batch_size, best_sparrow.learning_rate
```
在以上代码中,我们首先定义了LSTM神经网络模型和麻雀类,然后定义了麻雀优化算法函数`sparrow_optimization`。在`sparrow_optimization`函数中,我们首先初始化了麻雀群体,并在每次迭代中更新麻雀的位置和速度。然后,我们根据更新后的麻雀参数训练LSTM神经网络,并计算麻雀的适应度。最后,我们将麻雀适应度排序,选择最优麻雀,输出迭代信息,并返回最优的LSTM神经网络参数。
阅读全文