写一个Knn函数,result=Knn(train_data,train_label,test_data,n_test,K)
时间: 2024-09-24 20:30:09 浏览: 46
K近邻算法(K-Nearest Neighbors, KNN)是一种基于实例的学习方法,用于分类或回归分析。下面是一个简单的Python示例,如何编写一个基本的KNN函数。这个函数接受训练数据集`train_data`、训练标签`train_label`、测试数据集`test_data`,以及一些额外参数如`n_test`(测试样本的数量)、`K`(邻居数)。注意,在实际应用中,通常需要预处理数据并引入库如sklearn来进行计算,这里为了简洁只给出了核心逻辑:
```python
def Knn(train_data, train_label, test_data, n_test, K):
from sklearn.metrics.pairwise import euclidean_distances
from collections import Counter
def classify(data, labels, k):
distances = euclidean_distances(data, labels)
nearest_labels = [labels[index] for index in distances.argsort()[:k]]
return Counter(nearest_labels).most_common(1)[0][0]
# 计算距离和预测结果
predictions = []
for i in range(n_test):
single_test_point = test_data[i]
prediction = classify(train_data, train_label, K)
predictions.append(prediction)
result = predictions
return result
# 使用例子
train_data, train_label, test_data = ... # 这里应该替换为实际的数据
n_test, K = ..., ... # 测试样本数量和邻居数
result = Knn(train_data, train_label, test_data, n_test, K)
```
阅读全文