/** * 删除元数据定义 * * @param id 元数据定义ID * @return 删除成功/失败 */ 其中/**被隐藏了 怎么显示 idea
时间: 2024-09-27 18:01:38 浏览: 45
在 IntelliJ IDEA 中,如果你想查看被 "/*/" 或 "/**" 包裹的 Java 注释,可以按照以下步骤操作:
1. **鼠标悬停**:
将光标移动到注释的开始位置(通常是 `*` 符号),IDEA 会显示一个工具提示,其中包含注释内容。如果注释很长,工具提示可能会被折叠,这时可以稍微向下滚动页面。
2. **展开工具提示**:
可以尝试用鼠标滚轮向上滚动或者点击鼠标右键选择 "Show Tooltip" 来展开全部内容。
3. **快捷键**:
使用 `Ctrl` + `Q` (Windows/Linux)或 `Cmd` + `Q` (Mac)组合键,可以快速显示或折叠当前选中的注释。
4. **菜单操作**:
在 "Code" 菜单中,选择 "Editor" -> "Annotate" -> "Quick Documentation",这将打开一个面板显示所有可见的注释。
5. **检查设置**:
确保 "Editor" -> "General" -> "Code Inspection" 中的 "Show Javadoc" 设置为 "In editor only" 或者 "Always". 如果被设置为了 "Never",则注释不会在默认视图中显示。
6. **清理折叠**:
如果经常遇到这种情况,也可能是某些地方误触发了折叠。试着清理一下代码折叠,或者关闭 IDE 再次打开项目。
通过上述步骤应该能帮助你看到被隐藏的注释内容。如果仍然无法解决,可能是第三方插件或特殊配置导致的问题。
相关问题
写一个python Flask销售预测系统,系统有一个suanfa.py文件,该文件的作用:先读取shuju.csv(共有24条数据,包含Year、Month和TotalPrice三个属性),然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback):将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4,然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数,定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型求出MSE,保存模型。有一个predict.html文件:里面有一个日期选择框和一个销售额预测按钮,用户选择好年份和月份后点击预测按钮系统就开始调用保存好的模型来对所选月份的销售额进行预测,然后将预测结果返回到日期选择框下面的结果返回框中;有一个app.py文件:定义路径。用flask和bootstrap、LayUI写出完整详细代码
对于这个任务,我们需要完成以下几个步骤:
1. 编写算法脚本 suanfa.py,用于数据处理、模型训练和预测。
2. 编写 Flask 应用 app.py,用于处理用户请求并返回结果。
3. 编写 HTML 页面 predict.html,用于获取用户输入并向后端发送请求。
下面是详细的代码:
suanfa.py
```python
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
def split_data(data, lookback):
"""
划分数据集为训练集和测试集
:param data: DataFrame格式的原始数据集
:param lookback: 窗口大小,即用前几个月的销售额来预测下一个月的销售额
:return: (训练集输入数据, 训练集输出数据, 测试集输入数据, 测试集输出数据, scaler)
"""
data_raw = data.to_numpy()
scaler = MinMaxScaler(feature_range=(-1, 1))
data_scaled = scaler.fit_transform(data_raw)
result = []
for index in range(len(data_scaled) - lookback):
result.append(data_scaled[index: index + lookback])
result = np.array(result)
row = round(0.8 * result.shape[0])
train = result[:int(row), :]
np.random.shuffle(train)
x_train = train[:, :-1]
y_train = train[:, -1][:, -1]
x_test = result[int(row):, :-1]
y_test = result[int(row):, -1][:, -1]
x_train = torch.from_numpy(x_train).type(torch.Tensor)
x_test = torch.from_numpy(x_test).type(torch.Tensor)
y_train = torch.from_numpy(y_train).type(torch.Tensor)
y_test = torch.from_numpy(y_test).type(torch.Tensor)
return x_train, y_train, x_test, y_test, scaler
class LSTM(nn.Module):
def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):
super().__init__()
self.hidden_layer_size = hidden_layer_size
self.lstm = nn.LSTM(input_size, hidden_layer_size)
self.linear = nn.Linear(hidden_layer_size, output_size)
self.hidden_cell = (torch.zeros(1, 1, self.hidden_layer_size),
torch.zeros(1, 1, self.hidden_layer_size))
def forward(self, input_seq):
lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq), 1, -1), self.hidden_cell)
predictions = self.linear(lstm_out.view(len(input_seq), -1))
return predictions[-1]
def train_model(data, lookback, model_path):
"""
训练模型并保存
:param data: DataFrame格式的原始数据集
:param lookback: 窗口大小,即用前几个月的销售额来预测下一个月的销售额
:param model_path: 保存模型的路径
"""
x_train, y_train, x_test, y_test, scaler = split_data(data, lookback)
model = LSTM()
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 150
for i in range(epochs):
for j in range(x_train.size()[0]):
optimizer.zero_grad()
model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size),
torch.zeros(1, 1, model.hidden_layer_size))
y_pred = model(x_train[j])
single_loss = loss_function(y_pred, y_train[j])
single_loss.backward()
optimizer.step()
if i % 25 == 1:
print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')
torch.save(model.state_dict(), model_path)
print("Model saved")
def predict(model_path, input_date):
"""
使用保存的模型预测销售额
:param model_path: 保存模型的路径
:param input_date: 用户选择的日期,格式为'YYYY-MM'
:return: 预测销售额
"""
model = LSTM()
model.load_state_dict(torch.load(model_path))
model.eval()
data = pd.read_csv('shuju.csv')
data = data.set_index('Year-Month')
# 将输入的日期转换为对应的行数
row_num = data.index.get_loc(input_date)
x = data.iloc[row_num - 4:row_num + 1]['TotalPrice'].values
x = scaler.transform(x.reshape(-1, 1))
x = torch.from_numpy(x).type(torch.Tensor)
with torch.no_grad():
model.hidden = (torch.zeros(1, 1, model.hidden_layer_size),
torch.zeros(1, 1, model.hidden_layer_size))
pred = model(x)
pred = scaler.inverse_transform(pred.reshape(-1, 1))
return round(pred[0][0])
```
app.py
```python
from flask import Flask, render_template, request
from suanfa import predict
app = Flask(__name__)
# 预测模型保存路径
model_path = 'model.pth'
@app.route('/')
def index():
return render_template('predict.html')
@app.route('/predict', methods=['POST'])
def predict_sales():
# 获取用户输入的日期
input_date = request.form['input_date']
# 调用预测函数得到预测结果
pred = predict(model_path, input_date)
return render_template('predict.html', prediction=pred)
```
predict.html
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>销售额预测系统</title>
<link rel="stylesheet" href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css">
<link rel="stylesheet" href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap-theme.min.css">
<link rel="stylesheet" href="https://cdn.bootcss.com/layer/2.3/skin/default/layer.css">
<script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script>
<script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
<script src="https://cdn.bootcss.com/layer/2.3/layer.js"></script>
</head>
<body>
<div class="container">
<div class="page-header">
<h1>销售额预测系统</h1>
</div>
<div class="row">
<div class="col-md-6 col-md-offset-3">
<form class="form-inline" action="/predict" method="POST">
<div class="form-group">
<label for="input_date">日期:</label>
<input type="month" class="form-control" id="input_date" name="input_date" required>
</div>
<button type="submit" class="btn btn-primary">预测</button>
</form>
{% if prediction %}
<div class="alert alert-success" role="alert">
预测结果:{{ prediction }} 元
</div>
{% endif %}
</div>
</div>
</div>
</body>
</html>
```
在运行应用之前,需要在命令行中安装以下依赖:
```bash
pip install Flask pandas numpy torch sklearn
```
接下来,在命令行中输入以下命令启动应用:
```bash
export FLASK_APP=app.py
flask run
```
然后在浏览器中访问 http://127.0.0.1:5000/ 即可使用销售额预测系统。
Java ,druid 解析sql,并通过 feign接口查询到的表元数据,替换包含left join的insert into table ass_data select sql,支持mysql、hive、postgresql、oracle、sqlserver等多种数据库。需要写出代码
以下是一个示例代码,解析 SQL 并替换其中的 left join:
```java
import java.sql.*;
import java.util.*;
import java.util.regex.*;
import com.alibaba.druid.pool.*;
import com.alibaba.druid.sql.*;
import com.alibaba.druid.sql.ast.*;
import com.alibaba.druid.sql.ast.expr.*;
import com.alibaba.druid.sql.ast.statement.*;
import com.alibaba.druid.sql.dialect.mysql.visitor.*;
import com.alibaba.druid.sql.dialect.oracle.visitor.*;
import com.alibaba.druid.sql.dialect.postgresql.visitor.*;
import com.alibaba.druid.sql.dialect.sqlserver.visitor.*;
import com.alibaba.druid.sql.visitor.*;
import feign.*;
import feign.jackson.*;
public class SQLParser {
private static final Pattern LEFT_JOIN_PATTERN = Pattern.compile("\\bleft join\\b", Pattern.CASE_INSENSITIVE);
public static void main(String[] args) throws Exception {
String sql = "insert into table ass_data select a.*, b.* from table_a a left join table_b b on a.id = b.a_id";
String replacedSql = replaceLeftJoin(sql);
System.out.println(replacedSql);
// 使用 Feign 查询表元数据
String url = "http://localhost:8080/metaData";
String databaseType = "mysql"; // 数据库类型
String tableName = "table_a"; // 表名
Feign.Builder builder = Feign.builder().encoder(new JacksonEncoder()).decoder(new JacksonDecoder());
MetaDataService metaDataService = builder.target(MetaDataService.class, url);
TableMetaData tableMetaData = metaDataService.getTableMetaData(databaseType, tableName);
System.out.println(tableMetaData);
}
public static String replaceLeftJoin(String sql) throws Exception {
SQLStatementParser parser = new SQLStatementParser(sql);
SQLStatement statement = parser.parseStatement();
if (statement instanceof SQLInsertStatement) {
SQLInsertStatement insertStatement = (SQLInsertStatement) statement;
SQLSelectQuery selectQuery = insertStatement.getQuery().getQuery();
if (selectQuery instanceof SQLSelectQueryBlock) {
SQLSelectQueryBlock queryBlock = (SQLSelectQueryBlock) selectQuery;
List<SQLJoinTableSource> joinList = queryBlock.getJoinList();
for (SQLJoinTableSource join : joinList) {
if (join.getJoinType() == SQLJoinTableSource.JoinType.LEFT_OUTER_JOIN) {
String joinSql = SQLUtils.toMySqlString(join.getCondition());
if (LEFT_JOIN_PATTERN.matcher(joinSql).find()) {
// 使用 Feign 查询表元数据
String url = "http://localhost:8080/metaData";
String databaseType = "mysql"; // 数据库类型
String tableName = join.getRight().toString(); // 右表名
Feign.Builder builder = Feign.builder().encoder(new JacksonEncoder()).decoder(new JacksonDecoder());
MetaDataService metaDataService = builder.target(MetaDataService.class, url);
TableMetaData tableMetaData = metaDataService.getTableMetaData(databaseType, tableName);
if (tableMetaData != null) {
String tableAlias = join.getRight().getAlias();
if (tableAlias == null) {
tableAlias = join.getRight().toString();
}
String primaryKey = tableMetaData.getPrimaryKey();
StringBuilder sb = new StringBuilder();
sb.append("select a.*, b.* from ");
sb.append(join.getLeft().toString());
sb.append(" a left join ");
sb.append(join.getRight().toString());
sb.append(" b on a.");
sb.append(primaryKey);
sb.append(" = b.");
sb.append(primaryKey);
sb.append(" where ");
sb.append(join.getLeft().toString());
sb.append(".");
sb.append(primaryKey);
sb.append(" is not null");
if (tableAlias != null) {
sb.append(" and ");
sb.append(tableAlias);
sb.append(".");
sb.append(primaryKey);
sb.append(" is null");
}
queryBlock.setFrom(new SQLSubqueryTableSource(new SQLSelectStatement(new SQLSelect(sb.toString()), databaseType)));
join.setJoinType(SQLJoinTableSource.JoinType.INNER_JOIN);
join.setCondition(null);
}
}
}
}
return SQLUtils.toMySqlString(selectQuery);
}
}
return sql;
}
}
interface MetaDataService {
@RequestLine("GET /metaData?databaseType={databaseType}&tableName={tableName}")
TableMetaData getTableMetaData(@Param("databaseType") String databaseType, @Param("tableName") String tableName);
}
class TableMetaData {
private String tableName;
private List<String> columnNames;
private String primaryKey;
public String getTableName() {
return tableName;
}
public void setTableName(String tableName) {
this.tableName = tableName;
}
public List<String> getColumnNames() {
return columnNames;
}
public void setColumnNames(List<String> columnNames) {
this.columnNames = columnNames;
}
public String getPrimaryKey() {
return primaryKey;
}
public void setPrimaryKey(String primaryKey) {
this.primaryKey = primaryKey;
}
@Override
public String toString() {
return "TableMetaData [tableName=" + tableName + ", columnNames=" + columnNames + ", primaryKey=" + primaryKey + "]";
}
}
```
上述代码使用 Druid 解析 SQL,替换其中的 left join,然后使用 Feign 查询表元数据。其中 `MetaDataService` 接口用于定义查询表元数据的 API,`TableMetaData` 类用于存储表元数据。请根据实际情况修改代码。
阅读全文