tsp旅行商问题遗传算法
时间: 2023-12-18 10:29:09 浏览: 92
TSP问题是一个经典的组合优化问题,遗传算法是其中一种求解TSP问题的启发式算法。下面是遗传算法求解TSP问题的步骤:
1. 初始化种群:随机生成一定数量的路径作为初始种群。
2. 适应度函数:计算每个个体的适应度,即路径的总长度。
3. 选择操作:根据适应度函数选择优秀的个体,用于产生下一代种群。
4. 交叉操作:从父代中选择两个个体,通过交叉操作产生两个子代。
5. 变异操作:对子代进行变异操作,增加种群的多样性。
6. 更新种群:用新的个体替换旧的个体,产生下一代种群。
7. 终止条件:达到预设的迭代次数或者找到最优解时终止算法。
下面是一个Python实现的遗传算法求解TSP问题的例子:
```python
import random
# 城市坐标
city_pos = [(60, 200), (180, 200), (80, 180), (140, 180), (20, 160),
(100, 160), (200, 160), (140, 140), (40, 120), (100, 120),
(180, 100), (60, 80), (120, 80), (180, 60), (20, 40),
(100, 40), (200, 40), (20, 20), (60, 20), (160, 20)]
# 计算两个城市之间的距离
def distance(city1, city2):
return ((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2) ** 0.5
# 计算路径长度
def path_length(path):
length = 0
for i in range(len(path) - 1):
length += distance(city_pos[path[i]], city_pos[path[i+1]])
length += distance(city_pos[path[-1]], city_pos[path[0]])
return length
# 初始化种群
def init_population(pop_size, city_num):
population = []
for i in range(pop_size):
path = list(range(city_num))
random.shuffle(path)
population.append(path)
return population
# 选择操作
def selection(population, fitness):
fitness_sum = sum(fitness)
probability = [f/fitness_sum for f in fitness]
cum_probability = [sum(probability[:i+1]) for i in range(len(probability))]
new_population = []
for i in range(len(population)):
r = random.random()
for j in range(len(cum_probability)):
if r < cum_probability[j]:
new_population.append(population[j])
break
return new_population
# 交叉操作
def crossover(parent1, parent2):
child1, child2 = parent1.copy(), parent2.copy()
start, end = sorted([random.randint(0, len(parent1)-1) for _ in range(2)])
for i in range(start, end+1):
child1[i], child2[i] = child2[i], child1[i]
return child1, child2
# 变异操作
def mutation(path):
i, j = sorted([random.randint(0, len(path)-1) for _ in range(2)])
path[i:j+1] = reversed(path[i:j+1])
return path
# 遗传算法求解TSP问题
def tsp_ga(city_pos, pop_size=100, max_iter=1000):
city_num = len(city_pos)
population = init_population(pop_size, city_num)
best_path, best_length = None, float('inf')
for i in range(max_iter):
fitness = [1/path_length(path) for path in population]
best_index = fitness.index(max(fitness))
if path_length(population[best_index]) < best_length:
best_path = population[best_index]
best_length = path_length(best_path)
new_population = [population[best_index]]
while len(new_population) < pop_size:
parent1, parent2 = random.choices(population, weights=fitness, k=2)
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1) if random.random() < 0.1 else child1
child2 = mutation(child2) if random.random() < 0.1 else child2
new_population.extend([child1, child2])
population = selection(new_population, fitness)
return best_path, best_length
# 测试
best_path, best_length = tsp_ga(city_pos)
print('最短路径:', best_path)
print('路径长度:', best_length)
```
阅读全文