JavaScrip求最近点对,使用分治法,假设坐标为[[-1,1],[-4,-1].[-3,1].[0,0],[1,2],[2,-2],[4,1]]
时间: 2024-10-21 11:11:12 浏览: 16
在JavaScript中,我们可以使用分治法解决这个问题,首先将给定的坐标集合分为两部分,然后递归地寻找每部分内的最近点对,最后再比较这两部分之间的最近点对。这里有一个简化版的实现思路:
```javascript
function findClosestPoints(points) {
if (points.length <= 1) return [];
// 将点集一分为二
const mid = Math.floor(points.length / 2);
const leftPoints = points.slice(0, mid);
const rightPoints = points.slice(mid);
// 分别在左、右部分寻找最近点对
const closestOnLeft = findClosestPairs(leftPoints);
const closestOnRight = findClosestPairs(rightPoints);
// 找出整个区间范围内的最优最近点对
let closestIntersecting = [];
for (let i = 0; i < closestOnLeft.length; i++) {
for (let j = 0; j < closestOnRight.length; j++) {
const dist = calculateDistance(closestOnLeft[i], closestOnRight[j]);
if (!closestIntersecting || dist < closestIntersecting.distance) {
closestIntersecting = { pair: [closestOnLeft[i], closestOnRight[j]], distance: dist };
}
}
}
return closestIntersecting ? [closestIntersecting.pair, closestIntersecting.distance] : null;
}
function findClosestPairs(points) {
if (points.length <= 1) return [{ point: points[0], distance: 0 }];
// 假设点集已经按x轴排序
const sortedPoints = points.sort((a, b) => a[0] - b[0]);
// 使用二分查找找到跨越中点的最接近对
let left = 0, right = sortedPoints.length - 1;
let closestPair = sortedPoints[left], minDist = calculateDistance(sortedPoints[left], sortedPoints[right]);
while (left < right) {
let mid = Math.floor((left + right) / 2);
if (compareDistances(sortedPoints[mid], closestPair)) {
closestPair = sortedPoints[mid];
minDist = calculateDistance(sortedPoints[mid], closestPair);
} else {
right = mid;
}
}
return [{ point: closestPair, distance: minDist }];
}
function calculateDistance(p1, p2) {
return Math.sqrt(Math.pow(p1[0] - p2[0], 2) + Math.pow(p1[1] - p2[1], 2));
}
function compareDistances(p, currentBest) {
return calculateDistance(p, currentBest) < currentBest.distance;
}
// 测试数据
const points = [
[-1, 1],
[-4, -1],
[-3, 1],
[0, 0],
[1, 2],
[2, -2],
[4, 1]
];
console.log(findClosestPoints(points)); // 输出最近点对及其距离
```
这个代码首先将点集分成两半,然后分别找出每部分的最优近似对,最后遍历这两个近似对,找出在整个集合范围内距离最小的对。
阅读全文