nlp根据对联的上联自动生成下联
时间: 2023-07-21 09:52:46 浏览: 291
是的,现在有很多基于NLP技术的对联生成模型,可以根据输入的上联自动生成下联。这些模型通常使用深度学习算法,例如循环神经网络(RNN)和变压器(Transformer),来学习对联的语言模式和规律,并且能够生成符合语法和韵律的下联。这些模型通常需要大量的对联数据集来训练,并且需要不断地优化和调整才能生成更加优秀的对联。
相关问题
nlp根据对联的上联自动生成下联的代码
对联生成的代码比较复杂,需要使用深度学习框架和相关的自然语言处理库。以下是一个基于PyTorch的对联生成代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义模型
class Seq2Seq(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(Seq2Seq, self).__init__()
self.encoder_embedding = nn.Embedding(vocab_size, embedding_dim)
self.encoder_rnn = nn.GRU(embedding_dim, hidden_dim, batch_first=True)
self.decoder_embedding = nn.Embedding(vocab_size, embedding_dim)
self.decoder_rnn = nn.GRU(embedding_dim, hidden_dim, batch_first=True)
self.decoder_linear = nn.Linear(hidden_dim, vocab_size)
def forward(self, x, y):
encoder_embedded = self.encoder_embedding(x)
_, hidden = self.encoder_rnn(encoder_embedded)
decoder_embedded = self.decoder_embedding(y)
decoder_output, _ = self.decoder_rnn(decoder_embedded, hidden.unsqueeze(0))
output = self.decoder_linear(decoder_output)
return output
# 定义训练函数
def train(model, train_loader, optimizer, criterion, device):
model.train()
train_loss = 0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
output = model(x, y[:, :-1])
loss = criterion(output.reshape(-1, output.shape[-1]), y[:, 1:].reshape(-1))
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_loader)
# 定义生成函数
def generate(model, start_word, max_len, word2id, id2word, device):
model.eval()
start_tokens = [word2id[start_word]]
start_seq = torch.tensor(start_tokens, dtype=torch.long, device=device).reshape(1, -1)
with torch.no_grad():
for i in range(max_len):
output = model(start_seq, start_seq)
prob = output[:, -1, :].softmax(dim=-1).cpu().numpy()
next_word_id = np.random.choice(len(word2id), p=prob.reshape(-1))
start_tokens.append(next_word_id)
if id2word[next_word_id] == '<EOS>':
break
start_seq = torch.tensor([start_tokens], dtype=torch.long, device=device)
return ''.join([id2word[id] for id in start_tokens])
# 定义数据集和参数
train_data = [("上联1", "下联1"), ("上联2", "下联2"), ...]
vocab = set([word for pair in train_data for word in pair])
word2id = {'<PAD>': 0, '<UNK>': 1, '<EOS>': 2}
id2word = {0: '<PAD>', 1: '<UNK>', 2: '<EOS>'}
for i, word in enumerate(vocab):
word2id[word] = i + 3
id2word[i + 3] = word
train_loader = [(torch.tensor([word2id[word] for word in pair[0].split()], dtype=torch.long),
torch.tensor([word2id[word] for word in (pair[1] + '<EOS>').split()], dtype=torch.long))
for pair in train_data]
vocab_size = len(vocab) + 3
embedding_dim = 128
hidden_dim = 256
model = Seq2Seq(vocab_size, embedding_dim, hidden_dim)
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss(ignore_index=0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
train_loss = train(model, train_loader, optimizer, criterion, device)
print("Epoch [{}/{}], train loss: {:.4f}".format(epoch+1, num_epochs, train_loss))
# 生成对联
start_word = "上联"
max_len = 10
generated_couplet = generate(model, start_word, max_len, word2id, id2word, device)
print("生成的下联为:", generated_couplet)
```
需要注意的是,在实际的对联生成中,模型的训练和调参需要花费较长的时间和精力,同时需要使用更加复杂的模型和更大的数据集才能获得更好的效果。
tkinter界面上nlp自动生成对联下联的代码
以下是一个简单的 Tkinter 界面的代码,可以使用 GPT-2 模型生成对联的上下联:
```python
import tkinter as tk
import threading
import time
import torch
import transformers
# 加载 GPT-2 模型
tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2')
model = transformers.GPT2LMHeadModel.from_pretrained('gpt2')
# 定义生成对联的函数
def generate_couplet(prompt):
input_ids = tokenizer.encode(prompt, return_tensors='pt')
output = model.generate(input_ids=input_ids, max_length=20, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
return tokenizer.decode(output[0], skip_special_tokens=True)
# 定义 Tkinter 界面
class Application(tk.Frame):
def __init__(self, master=None):
super().__init__(master)
self.master = master
self.pack()
self.create_widgets()
def create_widgets(self):
self.prompt_label = tk.Label(self, text="请输入上联:")
self.prompt_label.pack(side="top")
self.prompt_entry = tk.Entry(self)
self.prompt_entry.pack(side="top")
self.result_label = tk.Label(self, text="")
self.result_label.pack(side="top")
self.generate_button = tk.Button(self, text="生成对联", command=self.generate_couplet)
self.generate_button.pack(side="bottom")
def generate_couplet(self):
prompt = self.prompt_entry.get()
t = threading.Thread(target=self.generate_couplet_thread, args=(prompt,))
t.start()
def generate_couplet_thread(self, prompt):
self.generate_button.config(state="disabled")
self.result_label.config(text="正在生成,请稍候...")
result = generate_couplet(prompt)
time.sleep(1) # 为了让用户看到"正在生成,请稍候..."这个提示
self.result_label.config(text=result)
self.generate_button.config(state="normal")
root = tk.Tk()
app = Application(master=root)
app.mainloop()
```
运行代码后,将会出现一个简单的界面,用户可以在界面上输入上联,然后点击“生成对联”按钮,程序会使用 GPT-2 模型生成下联,并在界面上显示出来。需要注意的是,由于 GPT-2 模型比较大,因此在第一次运行程序时,可能需要花费一些时间来下载模型和tokenizer。
阅读全文