错误使用 ~= 矩阵维度必须一致。 出错 kruskal_2 (line 17) if find(parent, start_node) ~= find(parent, end_node)

时间: 2023-12-17 16:04:17 浏览: 27
抱歉,我的代码有误,请把第17行的 `~=` 改为 `~any(find(parent, start_node) == find(parent, end_node))`,即: ```matlab % 输入边的信息,包括边的起点、终点和权重 edges = [1 2 2; 1 3 4; 2 3 1; 2 4 3; 3 4 5]; % 对边按权重从小到大进行排序 edges = sortrows(edges, 3); % 初始化并查集,用于维护生成树的连通性 parent = 1:4; rank = zeros(1, 4); % 遍历边,进行连通性判断和合并 num_edges = 0; min_spanning_tree = []; for i = 1:size(edges, 1) start_node = edges(i, 1); end_node = edges(i, 2); if ~any(find(parent, start_node) == find(parent, end_node)) min_spanning_tree = [min_spanning_tree; edges(i, :)]; num_edges = num_edges + 1; [parent, rank] = union(parent, rank, start_node, end_node); if num_edges == size(parent, 2) - 1 break; end end end % 输出最小生成树 disp(min_spanning_tree); ``` 这里的 `~any(find(parent, start_node) == find(parent, end_node))` 表示如果起点和终点不在同一棵生成树中,则将它们合并为一棵生成树。

相关推荐

修改一下该代码中的错误function [s1, s2] = repair_roads(data_file, pos_sheet, road_sheet, centers) % 检查输入参数是否合法 if nargin < 4 error('输入参数不足!'); end % 读取数据 position = xlsread(data_file, pos_sheet); roads = xlsread(data_file, road_sheet); % 计算各村庄之间的距离 n = size(position, 1); dist = pdist2(position, position); % 构建边集合 edges = []; for i = 1:n for j = i+1:n if roads[i,j] == 1 edges = [edges; i j dist(i,j)]; end end end % Kruskal算法求解最小生成树 edges = sortrows(edges, 3); parent = (1:n)'; rank = ones(n, 1); mst = []; for i = 1:size(edges,1) u = edges(i,1); v = edges(i,2); w = edges(i,3); pu = find(parent==u); pv = find(parent==v); if pu ~= pv mst = [mst; u v w]; if rank(pu) < rank(pv) parent(pu) = pv; elseif rank(pu) > rank(pv) parent(pv) = pu; else parent(pu) = pv; rank(pv) = rank(pv) + 1; end end end % 计算总距离S1 s1 = sum(min(dist(:,centers), [], 2)); % 计算维修道路总里程S2 is_center = ismember(1:n, centers); s2 = sum(mst(is_center(mst(:,1)) | is_center(mst(:,2)), 3)); % 绘制图形 colors = ['r', 'g', 'b']; figure; hold on; for i = 1:size(mst,1) u = mst(i,1); v = mst(i,2); w = mst(i,3); plot([position(u,1) position(v,1)], [position(u,2) position(v,2)], 'k'); end for i = 1:length(centers) plot(position(centers(i),1), position(centers(i),2), 'o', 'MarkerFaceColor', colors(i)); end for i = 1:n d = dist(i,centers); [~,c] = min(d); plot([position(i,1) position(centers(c),1)], [position(i,2) position(centers(c),2)], colors(c)); end hold off; % 输出结果 disp(['总距离S1:' num2str(s1)]); disp(['维修道路总里程S2:' num2str(s2)]); end

解决该代码存在的问题function [s1, s2] = repair_roads(data_file, pos_sheet, road_sheet, centers) % 读取数据 position = xlsread(data_file, pos_sheet); roads = xlsread(data_file, road_sheet); % 计算各村庄之间的距离 n = size(position, 1); dist = zeros(n, n); for i = 1:n for j = i+1:n dist(i,j) = sqrt((position(i,1)-position(j,1))^2 + (position(i,2)-position(j,2))^2); dist(j,i) = dist(i,j); end end % 构建边集合 edges = []; for i = 1:n for j = i+1:n if roads(i,j) == 1 edges = [edges; i j dist(i,j)]; end end end % Kruskal算法求解最小生成树 edges = sortrows(edges, 3); parent = (1:n)'; rank = ones(n, 1); mst = []; for i = 1:size(edges,1) u = edges(i,1); v = edges(i,2); w = edges(i,3); pu = find(parent, u); pv = find(parent, v); if pu ~= pv mst = [mst; u v w]; if rank(pu) < rank(pv) parent(pu) = pv; elseif rank(pu) > rank(pv) parent(pv) = pu; else parent(pu) = pv; rank(pv) = rank(pv) + 1; end end end % 计算总距离S1 s1 = 0; for i = 1:n d = inf; for j = 1:length(centers) d = min(d, dist(i,centers(j))); end s1 = s1 + d; end % 计算维修道路总里程S2 s2 = 0; for i = 1:size(mst,1) u = mst(i,1); v = mst(i,2); w = mst(i,3); if ismember(u, centers) || ismember(v, centers) s2 = s2 + w; end end % 绘制图形 colors = ['r', 'g', 'b']; figure; hold on; for i = 1:size(mst,1) u = mst(i,1); v = mst(i,2); w = mst(i,3); plot([position(u,1) position(v,1)], [position(u,2) position(v,2)], 'k'); end for i = 1:length(centers) plot(position(centers(i),1), position(centers(i),2), 'o', 'MarkerFaceColor', colors(i)); end for i = 1:n d = inf; c = 0; for j = 1:length(centers) if dist(i,centers(j)) < d d = dist(i,centers(j)); c = j; end end plot([position(i,1) position(centers(c),1)], [position(i,2) position(centers(c),2)], colors(c)); end hold off; % 输出结果 disp(['总距离S1:' num2str(s1)]); disp(['维修道路总里程S2:' num2str(s2)]); end

import random import heapq # 生成无向图 def generate_graph(n, p): graph = [[0] * n for _ in range(n)] for i in range(n): for j in range(i+1, n): if random.random() < p: graph[i][j] = graph[j][i] = random.randint(1, 10) return graph # Prim算法求最小生成树 def prim(graph): n = len(graph) visited = [False] * n heap = [(0, 0)] mst = [] while heap: weight, node = heapq.heappop(heap) if visited[node]: continue visited[node] = True mst.append((weight, node)) for i in range(n): if not visited[i] and graph[node][i] > 0: heapq.heappush(heap, (graph[node][i], i)) return mst # Kruskal算法求最小生成树 def kruskal(graph): n = len(graph) edges = [] for i in range(n): for j in range(i+1, n): if graph[i][j] > 0: edges.append((graph[i][j], i, j)) edges.sort() parent = list(range(n)) mst = [] for weight, u, v in edges: pu, pv = find(parent, u), find(parent, v) if pu != pv: mst.append((weight, u, v)) parent[pu] = pv return mst def find(parent, x): if parent[x] != x: parent[x] = find(parent, parent[x]) return parent[x] # 生成图 graph = generate_graph(10, 0.6) print(graph) mst_prim = prim(graph) print("Prim算法求最小生成树:", mst_prim) mst_kruskal = kruskal(graph) print("Kruskal算法求最小生成树:", mst_kruskal) # Dijkstra算法求最短路径 def dijkstra(graph, start, end): n = len(graph) dist = [float('inf')] * n dist[start] = 0 visited = [False] * n heap = [(0, start)] while heap: d, u = heapq.heappop(heap) if visited[u]: continue visited[u] = True for v in range(n): if graph[u][v] > 0: if dist[u] + graph[u][v] < dist[v]: dist[v] = dist[u] + graph[u][v] heapq.heappush(heap, (dist[v], v)) return dist[end] # Bellman-Ford算法求最短路代码分析

解决该代码位置2处的索引超出数组边界function [s1, s2] = repair_roads(data_file, pos_sheet, road_sheet, centers) % 检查输入参数是否合法 if nargin < 4 error('输入参数不足!'); end % 读取数据 position = xlsread(data_file, pos_sheet); roads = xlsread(data_file, road_sheet); % 计算各村庄之间的距离 n = size(position, 1); dist = pdist2(position, position); % 构建边集合 edges = []; for i = 1:n for j = i+1:n if roads(i,j) == 1 edges = [edges; i j dist(i,j)]; end end end % Kruskal算法求解最小生成树 edges = sortrows(edges, 3); parent = (1:n)'; rank = ones(n, 1); mst = []; for i = 1:size(edges,1) u = edges(i,1); v = edges(i,2); w = edges(i,3); pu = find(parent==u); pv = find(parent==v); if pu ~= pv mst = [mst; u v w]; if rank(pu) < rank(pv) parent(pu) = pv; elseif rank(pu) > rank(pv) parent(pv) = pu; else parent(pu) = pv; rank(pv) = rank(pv) + 1; end end end % 计算总距离S1 s1 = sum(min(dist(:,centers), [], 2)); % 计算维修道路总里程S2 is_center = ismember(1:n, centers); s2 = sum(mst(is_center(mst(:,1)) | is_center(mst(:,2)), 3)); % 绘制图形 colors = ['r', 'g', 'b']; figure; hold on; for i = 1:size(mst,1) u = mst(i,1); v = mst(i,2); w = mst(i,3); plot([position(u,1) position(v,1)], [position(u,2) position(v,2)], 'k'); end for i = 1:length(centers) plot(position(centers(i),1), position(centers(i),2), 'o', 'MarkerFaceColor', colors(i)); end for i = 1:n d = dist(i,centers); [~,c] = min(d); plot([position(i,1) position(centers(c),1)], [position(i,2) position(centers(c),2)], colors(c)); end hold off; % 输出结果 disp(['总距离S1:' num2str(s1)]); disp(['维修道路总里程S2:' num2str(s2)]); end

最新推荐

recommend-type

C++使用Kruskal和Prim算法实现最小生成树

主要介绍了C++使用Kruskal和Prim算法实现最小生成树,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Kruskal算法的MATLAB实现

Kruskal算法的MATLAB实现,输入参数d是原图的权值矩阵;输出参数T是最小生成树的顶点组成的矩阵,每条边的两个顶点放在同一列中;a是最小生成树的总权值
recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**