使用朴素贝叶斯、LOGIT、XGBOOST算法对文本进行文档分类实现代码
时间: 2023-12-18 08:05:00 浏览: 72
基于朴素贝叶斯实现的文本分类
以下是使用朴素贝叶斯、LOGIT、XGBOOST算法对文本进行文档分类的示例代码:
## 1. 数据预处理
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
# 读取数据
data = pd.read_csv('text_classification.csv')
# 划分训练集和测试集
train, test = train_test_split(data, test_size=0.2, random_state=42)
# 将文本转化为向量
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
train_vec = vectorizer.fit_transform(train['text'])
test_vec = vectorizer.transform(test['text'])
# 将标签转化为数字
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
train_label = label_encoder.fit_transform(train['label'])
test_label = label_encoder.transform(test['label'])
```
## 2. 朴素贝叶斯算法
```python
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
nb = MultinomialNB()
nb.fit(train_vec, train_label)
nb_pred = nb.predict(test_vec)
nb_acc = accuracy_score(test_label, nb_pred)
print('朴素贝叶斯算法的准确率为:', nb_acc)
```
## 3. LOGIT算法
```python
from sklearn.linear_model import LogisticRegression
logit = LogisticRegression()
logit.fit(train_vec, train_label)
logit_pred = logit.predict(test_vec)
logit_acc = accuracy_score(test_label, logit_pred)
print('LOGIT算法的准确率为:', logit_acc)
```
## 4. XGBOOST算法
```python
import xgboost as xgb
dtrain = xgb.DMatrix(train_vec, label=train_label)
dtest = xgb.DMatrix(test_vec, label=test_label)
params = {
'objective': 'multi:softmax',
'num_class': len(label_encoder.classes_)
}
xgb_model = xgb.train(params, dtrain, num_boost_round=100)
xgb_pred = xgb_model.predict(dtest)
xgb_acc = accuracy_score(test_label, xgb_pred)
print('XGBOOST算法的准确率为:', xgb_acc)
```
注意:以上代码仅供参考,具体实现需要根据数据集的情况进行调整。
阅读全文