用keras实现ESA_block

时间: 2023-07-12 10:06:29 浏览: 58
ESA_block是一种自注意力机制,可以应用于自然语言处理中的文本表示学习。下面是一个基于Keras实现ESA_block的示例代码: ```python import tensorflow as tf from tensorflow.keras import layers class ESA_block(layers.Layer): def __init__(self, embed_dim, num_heads, dense_dim, rate=0.1): super(ESA_block, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dense_dim = dense_dim self.rate = rate self.dense = layers.Dense(dense_dim, activation='relu') self.dropout1 = layers.Dropout(rate) self.dense2 = layers.Dense(embed_dim) self.dropout2 = layers.Dropout(rate) self.norm1 = layers.LayerNormalization(epsilon=1e-6) self.norm2 = layers.LayerNormalization(epsilon=1e-6) self.attention = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) def call(self, inputs, training=True): x = inputs attention_out = self.attention(x, x) attention_out = self.dropout1(attention_out, training=training) out1 = self.norm1(x + attention_out) dense_out = self.dense(out1) dense_out = self.dropout2(dense_out, training=training) out2 = self.norm2(out1 + self.dense2(dense_out)) return out2 ``` 在上述代码中,我们定义了一个名为ESA_block的自定义Keras层。这个层包括了一个多头注意力机制和两个前馈全连接层。该层的输入是一个形状为(batch_size, seq_len, embed_dim)的张量,其中seq_len表示序列长度,embed_dim表示嵌入维度。输出也是一个形状为(batch_size, seq_len, embed_dim)的张量。 在call方法中,我们首先通过调用注意力机制来计算自注意力向量。然后我们添加一个残差连接和一个层归一化操作。接下来,我们将注意力向量通过两个前馈全连接层,然后再次添加残差连接和层归一化操作。最后,我们返回输出张量。 要使用该层,可以像使用Keras中的其他层一样添加到自己的模型中。例如: ```python inputs = layers.Input(shape=(seq_len, embed_dim)) x = ESA_block(embed_dim, num_heads, dense_dim)(inputs) ... ``` 这里我们定义了一个输入张量,然后将它传递给ESA_block层,最后将输出张量传递给下一个层。

相关推荐

最新推荐

recommend-type

keras的load_model实现加载含有参数的自定义模型

本篇将深入探讨如何使用Keras的`load_model`函数加载含有参数的自定义模型。 首先,自定义模型和层是Keras的一大特色,它允许用户创建自己的神经网络组件以满足特定需求。在训练过程中,如果定义了一个名为`Self...
recommend-type

使用keras实现densenet和Xception的模型融合

在本文中,我们将深入探讨如何使用Keras框架实现深度学习模型DenseNet121和Xception的融合,以提高图像识别任务的性能。DenseNet121是一款高效的卷积神经网络,以其密集的连接特性著称,而Xception则是基于Inception...
recommend-type

Keras load_model 导入错误的解决方式

在使用Keras库进行深度学习模型开发时,`load_model`是用于加载预训练模型的重要函数。然而,有时在尝试加载模型时可能会遇到导入错误,这通常与依赖库的安装有关。本文将深入探讨如何解决Keras `load_model`导入...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

在Keras中,我们可以通过`validation_split`参数设置验证集的比例,例如`validation_split=0.2`表示使用20%的数据作为验证集。 如果在训练过程中发现`val_categorical_accuracy`始终为0,可能的原因是训练集和验证...
recommend-type

浅谈keras使用中val_acc和acc值不同步的思考

主要介绍了浅谈keras使用中val_acc和acc值不同步的思考,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

爬壁清洗机器人设计.doc

"爬壁清洗机器人设计" 爬壁清洗机器人是一种专为高层建筑外墙或屋顶清洁而设计的自动化设备。这种机器人能够有效地在垂直表面移动,完成高效且安全的清洗任务,减轻人工清洁的危险和劳动强度。在设计上,爬壁清洗机器人主要由两大部分构成:移动系统和吸附系统。 移动系统是机器人实现壁面自由移动的关键。它采用了十字框架结构,这种设计增加了机器人的稳定性,同时提高了其灵活性和避障能力。十字框架由两个呈十字型组合的无杆气缸构成,它们可以在X和Y两个相互垂直的方向上相互平移。这种设计使得机器人能够根据需要调整位置,适应不同的墙面条件。无杆气缸通过腿部支架与腿足结构相连,腿部结构包括拉杆气缸和真空吸盘,能够交替吸附在壁面上,实现机器人的前进、后退、转弯等动作。 吸附系统则由真空吸附结构组成,通常采用多组真空吸盘,以确保机器人在垂直壁面上的牢固吸附。文中提到的真空吸盘组以正三角形排列,这种方式提供了均匀的吸附力,增强了吸附稳定性。吸盘的开启和关闭由气动驱动,确保了吸附过程的快速响应和精确控制。 驱动方式是机器人移动的动力来源,由X方向和Y方向的双作用无杆气缸提供。这些气缸安置在中间的主体支架上,通过精确控制,实现机器人的精准移动。这种驱动方式既保证了力量,又确保了操作的精度。 控制系统作为爬壁清洗机器人的大脑,采用三菱公司的PLC-FX1N系列,负责管理机器人的各个功能,包括吸盘的脱离与吸附、主体的移动、清洗作业的执行等。PLC(可编程逻辑控制器)具有高可靠性,能根据预设程序自动执行指令,确保机器人的智能操作。 爬壁清洗机器人结合了机械结构、气动控制和智能电子技术,实现了在复杂环境下的自主清洁任务。其设计考虑了灵活性、稳定性和安全性,旨在提高高层建筑清洁工作的效率和安全性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python并发编程:从新手到专家的进阶之路(多线程与多进程篇)

![Python并发编程:从新手到专家的进阶之路(多线程与多进程篇)](https://img-blog.csdnimg.cn/12b70559909c4535891adbdf96805846.png) # 1. Python并发编程基础** 并发编程是一种编程范式,它允许程序同时执行多个任务。在Python中,可以通过多线程和多进程来实现并发编程。 多线程是指在单个进程中创建多个线程,每个线程可以独立执行任务。多进程是指创建多个进程,每个进程都有自己的内存空间和资源。 选择多线程还是多进程取决于具体应用场景。一般来说,多线程适用于任务之间交互较少的情况,而多进程适用于任务之间交互较多或
recommend-type

matlab小程序代码

MATLAB是一款强大的数值计算和可视化工具,特别适合进行科学计算、工程分析和数据可视化。编写MATLAB小程序通常涉及使用其内置的数据类型、函数库以及面向对象编程特性。以下是一个简单的MATLAB代码示例,用于计算两个数的和: ```matlab % MATLAB程序:计算两个数的和 function sum = addTwoNumbers(num1, num2) % 定义函数 sum = num1 + num2; % 返回结果 disp(['The sum of ' num2str(num1) ' and ' num2str(num2) ' is ' nu
recommend-type

喷涂机器人.doc

"该文档详细介绍了喷涂机器人的设计与研发,包括其背景、现状、总体结构、机构设计、轴和螺钉的校核,并涉及到传感器选择等关键环节。" 喷涂机器人是一种结合了人类智能和机器优势的机电一体化设备,特别在自动化水平高的国家,其应用广泛程度是衡量自动化水平的重要指标。它们能够提升产品质量、增加产量,同时在保障人员安全、改善工作环境、减轻劳动强度、提高劳动生产率和节省原材料等方面具有显著优势。 第一章绪论深入探讨了喷涂机器人的研究背景和意义。课题研究的重点在于分析国内外研究现状,指出国内主要集中在基础理论和技术的应用,而国外则在技术创新和高级功能实现上取得更多进展。文章明确了本文的研究内容,旨在通过设计高效的喷涂机器人来推动相关技术的发展。 第二章详细阐述了喷涂机器人的总体结构设计,包括驱动系统的选择(如驱动件和自由度的确定),以及喷漆机器人的运动参数。各关节的结构形式和平衡方式也被详细讨论,如小臂、大臂和腰部的传动机构。 第三章主要关注喷漆机器人的机构设计,建立了数学模型进行分析,并对腕部、小臂和大臂进行了具体设计。这部分涵盖了电机的选择、铰链四杆机构设计、液压缸设计等内容,确保机器人的灵活性和精度。 第四章聚焦于轴和螺钉的设计与校核,以确保机器人的结构稳定性。大轴和小轴的结构设计与强度校核,以及回转底盘与腰部主轴连接螺钉的校核,都是为了保证机器人在运行过程中的可靠性和耐用性。 此外,文献综述和外文文献分析提供了更广泛的理论支持,开题报告则展示了整个研究项目的目标和计划。 这份文档全面地展示了喷涂机器人的设计过程,从概念到实际结构,再到部件的强度验证,为读者提供了深入理解喷涂机器人技术的宝贵资料。