你可不可以编写一个能满足knn手写数字识别的画布,运用tkinter库
时间: 2024-05-01 10:16:29 浏览: 75
当然可以。以下是一个基本的KNN手写数字识别画布,使用了tkinter库:
```python
import tkinter as tk
from tkinter import messagebox
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 定义画布大小
CANVAS_WIDTH = 280
CANVAS_HEIGHT = 280
# 定义KNN分类器
knn = KNeighborsClassifier(n_neighbors=5)
# 定义画布
class Canvas(tk.Canvas):
def __init__(self, master, **kwargs):
super().__init__(master, bg="white", **kwargs)
self.bind("<Motion>", self.draw)
self.bind("<Button-1>", self.start_draw)
self.bind("<ButtonRelease-1>", self.stop_draw)
self.x = self.y = 0
self.drawing = False
def start_draw(self, event):
self.drawing = True
self.x = event.x
self.y = event.y
def stop_draw(self, event):
self.drawing = False
def draw(self, event):
if self.drawing:
self.create_line(self.x, self.y, event.x, event.y, width=20, capstyle=tk.ROUND, smooth=True)
self.x = event.x
self.y = event.y
def clear(self):
self.delete("all")
# 定义主界面
class App(tk.Tk):
def __init__(self):
super().__init__()
self.title("KNN手写数字识别")
self.geometry(f"{CANVAS_WIDTH+20}x{CANVAS_HEIGHT+80}")
self.canvas = Canvas(self, width=CANVAS_WIDTH, height=CANVAS_HEIGHT)
self.canvas.pack(pady=10)
self.predict_button = tk.Button(self, text="预测", command=self.predict)
self.predict_button.pack(side=tk.LEFT, padx=10)
self.clear_button = tk.Button(self, text="清空", command=self.clear_canvas)
self.clear_button.pack(side=tk.LEFT)
self.status_label = tk.Label(self, text="")
self.status_label.pack(pady=10)
def predict(self):
# 将画布转换为数组
img = np.array(self.canvas.postscript(colormode="color"), dtype=np.uint8)[75:, 75:][:, :, :3]
img = np.mean(img, axis=2)
img = img / 255
img = 1 - img
img = img.flatten()
img = img.reshape(1, -1)
# 加载训练好的KNN模型
knn_model = knn
knn_model.fit(X_train, y_train)
pred = knn_model.predict(img)
# 显示预测结果
self.status_label.config(text=f"预测结果:{pred[0]}")
def clear_canvas(self):
self.canvas.clear()
self.status_label.config(text="")
if __name__ == "__main__":
# 加载MNIST数据集
mnist = np.load("mnist.npz")
X_train = mnist["x_train"]
y_train = mnist["y_train"]
# 限制数据集大小,以便更快地训练和预测
X_train = X_train[:5000]
y_train = y_train[:5000]
# 将图像转换为一维向量
X_train = X_train.reshape(X_train.shape[0], -1)
# 启动应用程序
app = App()
app.mainloop()
```
该应用程序包括一个画布,用户可以在其上手写数字,并使用KNN模型进行预测。用户可以单击“预测”按钮以获取预测结果,或单击“清空”按钮以擦除画布。该应用程序还包括一个标签,用于显示预测结果。
阅读全文