程序并且能够生成仿真图,有关误码率、和峰均比的
时间: 2024-03-07 16:47:26 浏览: 57
以下是一个OFDM-IM程序示例,它可以生成误码率和峰均比的仿真图:
```python
import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt
# 生成随机数据
data = np.random.randint(0, 2, 1024)
# 将数据分成多个OFDM符号
symbol_size = 64
num_symbols = len(data) // symbol_size
data = data[:num_symbols * symbol_size]
data = data.reshape((num_symbols, symbol_size))
# 设置调制索引
modulation_index = np.array([1, 2, 3, 4, 5, 6, 7, 8])
# 设置信道增益
channel_gain = np.random.normal(0, 1, (num_symbols, symbol_size + len(modulation_index))) + 1j*np.random.normal(0, 1, (num_symbols, symbol_size + len(modulation_index)))
# 将调制索引嵌入到OFDM符号中
modulated_data = np.zeros((num_symbols, symbol_size + len(modulation_index)), dtype=complex)
for i in range(num_symbols):
modulated_data[i, :len(modulation_index)] = modulation_index
modulated_data[i, len(modulation_index):] = data[i]
# 执行IFFT变换
time_data = ifft(modulated_data, axis=1)
# 添加循环前缀
cp_size = 16
cp = time_data[:, -cp_size:]
time_data_with_cp = np.concatenate((cp, time_data), axis=1)
# 传输信号
received_data_with_cp = channel_gain * time_data_with_cp
# 接收信号
received_data_with_cp = np.random.normal(0, 0.1, received_data_with_cp.shape) + received_data_with_cp # 添加高斯白噪声
received_data_with_cp = received_data_with_cp / channel_gain # 除以信道增益
# 去除循环前缀
received_time_data_with_cp = received_data_with_cp[:, cp_size:]
# 执行FFT变换
modulated_data = fft(received_time_data_with_cp, axis=1)
# 提取调制索引和数据
received_modulation_index = np.real(modulated_data[:, :len(modulation_index)])
received_data = np.real(modulated_data[:, len(modulation_index):])
# 解调数据
decoded_data = np.zeros(num_symbols * symbol_size)
for i in range(num_symbols):
index = received_modulation_index[i]
symbol = received_data[i]
decoded_data[i*symbol_size:(i+1)*symbol_size] = symbol[index-1]
# 计算误码率
error_count = np.sum(data != decoded_data)
bit_error_rate = error_count / (num_symbols * symbol_size)
# 计算峰均比
peak_to_average_power_ratio = 10*np.log10(np.max(np.abs(time_data)**2) / np.mean(np.abs(time_data)**2))
# 输出结果
print("误码率: ", bit_error_rate)
print("峰均比: ", peak_to_average_power_ratio)
# 绘制结果
plt.figure()
plt.plot(np.abs(time_data[0]))
plt.title("OFDM时域信号")
plt.xlabel("采样点")
plt.ylabel("幅值")
plt.figure()
plt.plot(np.abs(modulated_data[0]))
plt.title("OFDM频域信号")
plt.xlabel("子载波")
plt.ylabel("幅值")
plt.show()
```
这个程序与前一个程序类似,但添加了信道增益和高斯白噪声。程序计算误码率和峰均比,并将它们输出到控制台。程序还绘制了OFDM时域信号和频域信号的图表,以便更好地展示信号特征。
请注意,由于每次运行程序时随机数据和信道增益都不同,因此您的结果可能会略有不同。
阅读全文