python network最短路径
时间: 2023-06-09 22:07:28 浏览: 165
Python 中查找最短路径通常使用图算法中的 Dijkstra 算法。具体实现可以使用第三方库 networkx。以下是一个简单的示例代码:
```python
import networkx as nx
# 构建一个简单图
G = nx.Graph()
G.add_edge('A', 'B', weight=4)
G.add_edge('B', 'C', weight=8)
G.add_edge('C', 'D', weight=7)
G.add_edge('D', 'E', weight=9)
G.add_edge('E', 'F', weight=10)
G.add_edge('F', 'C', weight=4)
G.add_edge('F', 'A', weight=14)
G.add_edge('B', 'F', weight=2)
# 计算最短路径
shortest_path = nx.dijkstra_path(G, 'A', 'E')
print(shortest_path) # 输出 ['A', 'B', 'F', 'E']
```
以上代码中,我们使用 `add_edge` 方法将节点和边添加到图中。权重可以通过 `weight` 参数指定。在计算最短路径时,我们使用了 `dijkstra_path` 方法,并指定了起始节点和结束节点。最后输出了结果:最短路径为 `['A', 'B', 'F', 'E']`。
相关问题
生成python代码,要求:以邻接矩阵的形式,定义一个简单路网,定义一个起点和一个终点,运用dijkstra算法生成最短路径,然后将最短路径上的所有路段距离增加2倍,然后更新路网,寻找最短路径,直至找到10条最短路径,筛选掉重复的路径,得到不包含重复路径的路径集,以下形式输出路径集:n×m的矩阵,n为路径数量,m为路段数量,如果路段m在路径n里面,则(n,m)值为1,否则为0
以下是生成python代码的答案,可以满足您的要求:
```python
import heapq
# 定义邻接矩阵表示路网
network = [[0, 2, 0, 4, 0, 0],
[2, 0, 3, 0, 0, 0],
[0, 3, 0, 1, 3, 0],
[4, 0, 1, 0, 1, 2],
[0, 0, 3, 1, 0, 1],
[0, 0, 0, 2, 1, 0]]
# 定义起点和终点
start, end = 0, 5
# Dijkstra算法求最短路径
def dijkstra(network, start, end):
n = len(network)
visited = [False] * n
distance = [float('inf')] * n
distance[start] = 0
heap = [(0, start)]
while heap:
(dist, u) = heapq.heappop(heap)
if visited[u]:
continue
visited[u] = True
for v in range(n):
if network[u][v] > 0:
alt = dist + network[u][v]
if alt < distance[v]:
distance[v] = alt
heapq.heappush(heap, (alt, v))
return distance[end]
# 将最短路径上的所有路段距离增加2倍,并更新路网
def double_distance(network, path):
for i in range(len(path) - 1):
u, v = path[i], path[i+1]
network[u][v] *= 2
network[v][u] *= 2
# 寻找10条最短路径,并筛选掉重复的路径
paths = []
for i in range(10):
# Dijkstra算法求最短路径
distance = dijkstra(network, start, end)
path = [end]
while path[-1] != start:
for u in range(len(network)):
if network[u][path[-1]] > 0 and distance - network[u][path[-1]] == distance[u]:
path.append(u)
break
path.reverse()
paths.append(path)
double_distance(network, path)
unique_paths = []
for path in paths:
if path not in unique_paths:
unique_paths.append(path)
# 输出路径集
n = len(unique_paths)
m = len(network)
matrix = [[0] * m for i in range(n)]
for i in range(n):
for j in range(m):
if j < m - 1 and unique_paths[i][j] == unique_paths[i][j+1]:
continue
matrix[i][j] = 1
print(matrix)
```
希望这份代码能够满足您的需求!
sumo 最短路径代码
以下是使用Python和SUMO API实现最短路径的示例代码:
```python
import os
import sys
import optparse
import random
import time
import sumolib
import traci
def get_options():
opt_parser = optparse.OptionParser()
opt_parser.add_option("--nogui", action="store_true",
default=False, help="run the commandline version of the simulation")
options, args = opt_parser.parse_args()
return options
def run():
options = get_options()
# start sumo
if options.nogui:
sumoBinary = sumolib.checkBinary('sumo')
else:
sumoBinary = sumolib.checkBinary('sumo-gui')
sumoProcess = subprocess.Popen([sumoBinary, "-c", "path/to/your/sumo_config_file.sumocfg"], stdout=sys.stdout, stderr=sys.stderr)
# wait for sumo to start
traci.init(port=8813)
# get all edges in the network
edges = traci.edge.getIDList()
# choose a random start and end edge
start_edge = random.choice(edges)
end_edge = random.choice(edges)
# compute the shortest path using the dijkstra algorithm
path = traci.simulation.findRoute(start_edge, end_edge)
# print the path and its length
print("Shortest path from", start_edge, "to", end_edge, "is", path)
print("Length:", traci.simulation.findRouteLength(start_edge, end_edge))
# close sumo
traci.close()
sumoProcess.terminate()
if __name__ == "__main__":
run()
```
请注意,此示例代码假定已按照SUMO的安装说明正确安装了SUMO和SUMO API,并且已经创建了适当的SUMO配置文件。您需要将 `path/to/your/sumo_config_file.sumocfg` 替换为您的 SUMO 配置文件的路径。
阅读全文