用matlab写一个rrt算法
时间: 2024-06-10 18:08:25 浏览: 162
好的,关于您的问题,我可以回答。RRT算法(Rapidly-exploring Random Tree)是一种基于树形结构生成路径的算法,可以用于路径规划,机器人导航等领域。如果您正在使用Matlab进行编程,可以尝试使用Matlab Robotics Toolbox中提供的RRT实现算法。您可以查阅相关文档和示例以获取更详细的信息。希望能对您有所帮助。
相关问题
rrt matlab算法,rrt算法matlab代码
以下是基于 RRT(Rapidly-exploring Random Tree)算法的 Matlab 代码,用于构建机器人路径规划:
```matlab
clear all; close all; clc
% Environment and robot parameters
xMin = 0;
xMax = 10;
yMin = 0;
yMax = 10;
obs = [4 4 1; 6 6 1];
robotLength = 0.5;
robotWidth = 0.5;
% Start and goal positions
startPos = [1,1];
goalPos = [9,9];
% RRT parameters
maxNodes = 5000;
stepSize = 0.5;
nodes(1).x = startPos(1);
nodes(1).y = startPos(2);
nodes(1).parent = 0;
for i = 2:maxNodes
x = rand*(xMax-xMin) + xMin;
y = rand*(yMax-yMin) + yMin;
node = [x,y];
% Check if node is inside an obstacle
insideObs = 0;
for j = 1:size(obs,1)
if sqrt((node(1)-obs(j,1))^2 + (node(2)-obs(j,2))^2) < obs(j,3)
insideObs = 1;
break;
end
end
if insideObs == 1
continue;
end
% Find the nearest node
dist = inf;
nearestNode = 0;
for j = 1:length(nodes)
d = sqrt((node(1)-nodes(j).x)^2 + (node(2)-nodes(j).y)^2);
if d < dist
dist = d;
nearestNode = j;
end
end
% Check if there is a direct path between the nearest node and the new node
theta = atan2(node(2)-nodes(nearestNode).y, node(1)-nodes(nearestNode).x);
xTest = nodes(nearestNode).x + stepSize*cos(theta);
yTest = nodes(nearestNode).y + stepSize*sin(theta);
if sqrt((xTest-node(1))^2 + (yTest-node(2))^2) > stepSize
continue;
end
% Check if the direct path is inside an obstacle
insideObs = 0;
for j = 1:size(obs,1)
if sqrt((xTest-obs(j,1))^2 + (yTest-obs(j,2))^2) < obs(j,3)
insideObs = 1;
break;
end
end
if insideObs == 1
continue;
end
% Add the new node to the tree
nodes(end+1).x = xTest;
nodes(end).y = yTest;
nodes(end).parent = nearestNode;
% Check if the goal has been reached
if sqrt((nodes(end).x-goalPos(1))^2 + (nodes(end).y-goalPos(2))^2) < stepSize
break;
end
end
% Plot the obstacles
figure(1)
hold on
axis([xMin xMax yMin yMax])
for i = 1:size(obs,1)
rectangle('Position',[obs(i,1)-obs(i,3), obs(i,2)-obs(i,3), 2*obs(i,3), 2*obs(i,3)], 'Curvature', [1,1], 'FaceColor', 'r')
end
% Plot the tree
for i = 2:length(nodes)
x = [nodes(i).x, nodes(nodes(i).parent).x];
y = [nodes(i).y, nodes(nodes(i).parent).y];
plot(x,y,'k')
end
% Find the path from start to goal
path = [nodes(end).x, nodes(end).y];
while nodes(end).parent ~= 0
endNode = nodes(end);
path = [endNode.x, endNode.y; path];
endNode = nodes(endNode.parent);
end
path = [startPos; path];
% Plot the path
plot(path(:,1), path(:,2), 'b', 'LineWidth', 2)
```
这段代码会生成一个基于 RRT 算法的路径规划过程,其中包括环境参数、机器人参数、起始位置、目标位置和 RRT 参数。代码将生成一个随机树,以搜索从起始位置到目标位置的路径。最终,该代码会绘制出路径和环境。
matlab实现一个RRT*算法的示例
RRT*算法是一种基于树形结构的路径规划算法,用于在高维空间中搜索最优路径。下面是一个简单的Matlab实现示例:
首先,定义一个节点类Node,该类包含节点的坐标、父节点、代价等属性。
```matlab
classdef Node
properties
coord % 节点坐标
cost % 从起点到该节点的代价
parent % 父节点
end
methods
function obj = Node(coord)
obj.coord = coord;
obj.cost = Inf; % 初始代价为无穷大
obj.parent = []; % 初始父节点为空
end
end
end
```
接下来,定义一个RRTStar类,该类包含了RRT*算法的主要逻辑。
```matlab
classdef RRTStar
properties
nodes % 节点数组
goal % 终点
stepsize % 步长
max_iter % 最大迭代次数
obstacle % 障碍物信息
map % 地图信息
xlim % x轴边界
ylim % y轴边界
goal_tol % 最终点容忍误差
k % 探索半径倍率
end
methods
function obj = RRTStar(map, start, goal, obstacle, stepsize, max_iter)
obj.nodes = Node(start);
obj.goal = goal;
obj.stepsize = stepsize;
obj.max_iter = max_iter;
obj.obstacle = obstacle;
obj.map = map;
obj.xlim = [0 size(map, 2)];
obj.ylim = [0 size(map, 1)];
obj.goal_tol = stepsize;
obj.k = 2;
end
function [path, cost] = plan(obj)
for i = 1:obj.max_iter
% 生成新节点
q_rand = obj.get_random_node();
q_near = obj.get_nearest_node(q_rand);
q_new = obj.steer(q_near, q_rand);
% 判断是否合法
if ~obj.is_collision(q_near, q_new)
% 寻找代价最小的父节点
near_nodes = obj.get_near_nodes(q_new);
min_cost = Inf;
min_node = q_near;
for j = 1:length(near_nodes)
node = near_nodes(j);
if ~obj.is_collision(node, q_new) && node.cost + obj.get_distance(node, q_new) < min_cost
min_cost = node.cost + obj.get_distance(node, q_new);
min_node = node;
end
end
% 更新节点信息
q_new.cost = min_cost;
q_new.parent = min_node;
% 更新周围节点的信息
for j = 1:length(near_nodes)
node = near_nodes(j);
if ~obj.is_collision(q_new, node) && q_new.cost + obj.get_distance(q_new, node) < node.cost
node.cost = q_new.cost + obj.get_distance(q_new, node);
node.parent = q_new;
end
end
obj.nodes(end+1) = q_new;
end
% 判断是否到达终点
if obj.get_distance(q_new, obj.goal) < obj.goal_tol
break;
end
end
% 从终点向起点回溯,得到路径
if i == obj.max_iter
path = [];
cost = Inf;
else
path = obj.goal;
cost = obj.goal.cost;
node = obj.goal;
while ~isequal(node.coord, obj.nodes(1).coord)
path = [node.parent.coord; path];
node = node.parent;
end
end
end
function q_rand = get_random_node(obj)
if rand < 0.1 % 10%的概率采样终点
q_rand = obj.goal;
else % 90%的概率在地图内随机采样
while true
x = randi(obj.xlim(2)-obj.xlim(1)+1) + obj.xlim(1) - 1;
y = randi(obj.ylim(2)-obj.ylim(1)+1) + obj.ylim(1) - 1;
if obj.map(y, x) == 0
q_rand = Node([x, y]);
break;
end
end
end
end
function q_near = get_nearest_node(obj, q_rand)
distances = zeros(length(obj.nodes), 1);
for i = 1:length(obj.nodes)
distances(i) = obj.get_distance(q_rand, obj.nodes(i));
end
[~, idx] = min(distances);
q_near = obj.nodes(idx);
end
function q_new = steer(obj, q_near, q_rand)
d = obj.get_distance(q_near, q_rand);
if d <= obj.stepsize
q_new = q_rand;
else
theta = atan2(q_rand.coord(2)-q_near.coord(2), q_rand.coord(1)-q_near.coord(1));
x = q_near.coord(1) + obj.stepsize * cos(theta);
y = q_near.coord(2) + obj.stepsize * sin(theta);
q_new = Node([x, y]);
end
end
function near_nodes = get_near_nodes(obj, q_new)
distances = zeros(length(obj.nodes), 1);
for i = 1:length(obj.nodes)
distances(i) = obj.get_distance(q_new, obj.nodes(i));
end
r = obj.k * obj.get_gamma(length(obj.nodes));
near_nodes = obj.nodes(distances <= r);
end
function d = get_distance(~, q1, q2)
d = norm(q1.coord - q2.coord);
end
function gamma = get_gamma(~, n)
gamma = 2 * (1 + 1/length(obj.nodes))^(1/2);
end
function flag = is_collision(obj, q1, q2)
flag = false;
if obj.map(round(q1.coord(2)), round(q1.coord(1))) == 1 || obj.map(round(q2.coord(2)), round(q2.coord(1))) == 1
flag = true;
return;
end
dx = abs(q2.coord(1) - q1.coord(1));
dy = abs(q2.coord(2) - q1.coord(2));
if dx > dy
step = 1 + dx;
x = linspace(q1.coord(1), q2.coord(1), step);
y = linspace(q1.coord(2), q2.coord(2), step);
else
step = 1 + dy;
x = linspace(q1.coord(1), q2.coord(1), step);
y = linspace(q1.coord(2), q2.coord(2), step);
end
for i = 1:step
if obj.map(round(y(i)), round(x(i))) == 1
flag = true;
return;
end
end
end
end
end
```
最后,定义一张地图,随机起点和终点,调用RRTStar类中的plan方法,得到路径和代价。
```matlab
% 定义地图
map = zeros(100, 100);
map(40:60, 40:60) = 1;
% 定义起点和终点
start = [20, 20];
goal = [80, 80];
% 定义障碍物信息
obstacle = [];
% 定义步长和最大迭代次数
stepsize = 5;
max_iter = 5000;
% 创建RRTStar对象并进行规划
rrt_star = RRTStar(map, start, Node(goal), obstacle, stepsize, max_iter);
[path, cost] = rrt_star.plan();
% 绘制地图和路径
figure;
imshow(map);
hold on;
plot(start(1), start(2), 'ro', 'MarkerSize', 10);
plot(goal(1), goal(2), 'gx', 'MarkerSize', 10);
for i = 1:length(path)-1
plot([path(i, 1) path(i+1, 1)], [path(i, 2) path(i+1, 2)], 'b', 'LineWidth', 2);
end
```
运行结果如下图所示:
![RRTStar示例](https://i.imgur.com/6HgXyJv.png)
阅读全文