a*与dwa算法融合python
时间: 2025-01-06 11:41:17 浏览: 10
### 结合A*与DWA算法的Python实现
为了将A*路径规划算法与动态窗口法(Dynamic Window Approach, DWA)相结合,在移动机器人导航领域可以创建一种混合策略。该方法利用A*来寻找全局最优路径,而通过DWA实现在局部环境中的实时避障。
#### 定义工作空间和障碍物地图
首先定义机器人的操作环境以及静态障碍的位置信息:
```python
import numpy as np
def create_map(width=100, height=100):
"""Create an empty map with given dimensions."""
grid = np.zeros((height, width))
# Add obstacles (example)
obstacle_positions = [(20, 30), (40, 50)]
for pos in obstacle_positions:
y, x = pos
grid[y][x] = 1
return grid
```
#### 实现A*寻路功能
接着基于给定的地图数据结构化表示,采用优先队列优化版A*搜索最短路径至目标位置[^1]:
```python
from heapq import heappop, heappush
class Node:
def __init__(self, position=None, parent=None):
self.position = position
self.parent = parent
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def astar(maze, start, end):
open_list = []
closed_list = []
start_node = Node(start, None)
goal_node = Node(end, None)
heappush(open_list, (start_node.f, start_node))
while len(open_list)>0:
current_f, current_node = heappop(open_list)
if current_node.position==goal_node.position:
path = []
temp = current_node
while temp is not None:
path.append(temp.position)
temp = temp.parent
return path[::-1]
children = []
adjacent_squares = ((0,-1),(0,1),(-1,0),(1,0))
for new_position in adjacent_squares:
node_position = (current_node.position[0]+new_position[0],
current_node.position[1]+new_position[1])
within_range_criteria = [
node_position[0]>maze.shape[0]-1,
node_position[0]<0,
node_position[1]>maze.shape[1]-1,
node_position[1]<0]
if any(within_range_criteria): continue
if maze[node_position[0]][node_position[1]] != 0: continue
new_node = Node(node_position, current_node)
children.append(new_node)
for child in children:
if len([closed_child for closed_child in closed_list
if closed_child == child])>0:continue
child.g = current_node.g + 1
child.h = abs(child.position[0] - goal_node.position[0]) \
+abs(child.position[1] - goal_node.position[1])
child.f = child.g + child.h
if len([open_node for open_node in open_list
if open_node[1]==child and child.g > open_node[1].g ])>0:
continue
heappush(open_list,(child.f, child))
closed_list.append(current_node)
raise ValueError('No Path Found')
```
#### 动态窗口方法调整速度指令
当获得由A*产生的参考轨迹之后,应用DWA计算适合当前状态的速度控制量以避开动态障碍并沿预定路线前进:
```python
def dwa_control(x, config, goal, ob):
"""
Dynamic Window Algorithm control.
:param x: state vector [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)].
:param config: robot parameter class.
:param goal: goal position [x(m), y(m)].
:param ob: obstacle positions [[x(m), y(m)],...].
"""
dw = calc_dynamic_window(x, config)
u, trajectory = calc_final_input(x, dw, config, goal, ob)
return u, trajectory
def motion(x, u, dt):
"""
Motion Model.
:param x: state vector [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)].
:param u: input vector [v(m/s), omega(rad/s)].
:param dt: time tick[s].
"""
x[0] += u[0]*np.cos(x[2])*dt
x[1] += u[0]*np.sin(x[2])*dt
x[2] += u[1]*dt
x[3] = u[0]
x[4] = u[1]
return x
```
此代码片段展示了如何构建一个简单的框架用于融合这两种技术;然而实际部署时还需要考虑更多细节比如传感器读数处理、更复杂的运动学建模等。
阅读全文