R语言XGBoost员工流失预测代码
时间: 2024-10-20 22:02:04 浏览: 88
在R语言中,使用XGBoost进行员工流失预测通常涉及以下几个步骤:
1. **数据加载和预处理**:
```R
library(xgboost)
library(dplyr)
# 加载数据
data <- read.csv("employee_data.csv") # 假设数据文件名为"employee_data.csv"
data$target <- ifelse(data$离职状态 == "yes", 1, 0) # 将离职状态转化为二分类目标变量
# 数据清洗、缺失值处理和特征工程
data %>% dropna() %>%
select(-c(column_to_drop)) # 删除不需要的列
```
2. **拆分数据集**:
```R
set.seed(123)
train_index <- sample(nrow(data), nrow(data) * 0.8)
train_data <- data[train_index, ]
test_data <- data[-train_index, ]
x_train <- train_data[, - test_data[, -ncol(test_data)]
y_test <- test_data$target
```
3. **建立模型**:
```R
params <- list(
objective = "binary:logistic", # 对于二分类问题,选择 logistic 回归
booster = "gbtree", # 使用GBDT算法
max_depth = 5, # 树的最大深度
eta = 0.3, # 学习率
nrounds = 100 # 迭代次数
)
model <- xgboost(params, dmatrix = as.matrix(x_train), label = y_train)
```
4. **评估模型**:
```R
pred <- predict(model, as.matrix(x_test))
confusion_matrix <- table(pred, y_test)
accuracy <- sum(diag(confusion_matrix))/sum(confusion_matrix)
```
5. **模型优化与调整**:
```R
cv_results <- xgb.cv(params, dmatrix = as.matrix(x_train), label = y_train, nfold = 5)
best_params <- cv_results$best_params
final_model <- xgboost(best_params, dmatrix = as.matrix(x_train), label = y_train)
```
阅读全文
相关推荐
















