sm3加密算法c语言实现
时间: 2024-11-09 08:12:44 浏览: 34
SM3是一种由国家信息安全工程技术研究中心开发的安全散列函数,用于密码学应用,类似于MD5或SHA系列。在C语言中实现SM3,你需要编写一些核心函数来处理哈希过程。以下是简单的步骤概述:
1. **包含头文件**:首先,需要导入必要的库文件,例如`sm3.h`,它通常包含了SM3相关的声明。
```c
#include "sm3.h"
```
2. **初始化SM3状态**:创建一个`SM3Context`结构,并进行初始化。
```c
SM3Context ctx;
SM3_Init(&ctx);
```
3. **添加数据**:使用`SM3_Update`函数将待哈希的数据块逐字节添加到上下文中。
```c
void* data = ...; // 待哈希的数据
size_t len = ...; // 数据长度
SM3_Update(&ctx, data, len);
```
4. **完成哈希**:在处理完所有数据后,使用`SM3_Final`来生成最终的哈希值并将其存储到缓冲区`hash_output`中。
```c
uint8_t hash_output[SM3_DIGEST_LENGTH];
SM3_Final(hash_output, &ctx);
```
5. **清理**:最后别忘了清理上下文。
```c
SM3_Free(&ctx);
```
这是一个简化的版本,实际实现可能涉及到更复杂的内存管理和错误检查。如果你需要完整的源码,你可以从开源项目或者官方文档中获取。
相关问题
sm4加密算法C语言实现
以下是SM4加密算法的C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define GET_ULONG_BE(n,b,i) \
{ \
(n) = ( (unsigned int) (b)[(i) ] << 24 ) \
| ( (unsigned int) (b)[(i) + 1] << 16 ) \
| ( (unsigned int) (b)[(i) + 2] << 8 ) \
| ( (unsigned int) (b)[(i) + 3] ); \
}
#define PUT_ULONG_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#define SHL(x,n) (((x) & 0xFFFFFFFF) << n)
#define ROTL(x,n) (SHL((x),n) | ((x) >> (32 - n)))
#define SWAP(a,b) { unsigned int t = a; a = b; b = t; t = 0; }
#define SBOX_TABLE_SIZE 256
static const unsigned char SboxTable[SBOX_TABLE_SIZE] = {
0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05,
0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99,
0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62,
0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6,
0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8,
0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35,
0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87,
0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e,
0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1,
0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3,
0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f,
0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51,
0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8,
0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0,
0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84,
0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48
};
static const unsigned int FK[4] = {
0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC
};
static const unsigned int CK[32] = {
0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb020f,
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
};
#define sm4Sbox(x) \
(SboxTable[(x)])
#define sm4Lt(ka) \
(ka ^ ROTL(ka, 2) ^ ROTL(ka, 10) ^ ROTL(ka, 18) ^ ROTL(ka, 24))
#define sm4F(x0,x1,x2,x3,x4) \
{ \
x4 = x1 ^ x2 ^ x3 ^ rk; \
x4 = sm4Sbox(x4); \
x0 = x0 ^ sm4Lt(x4); \
}
#define sm4CalciRK(in) \
{ \
unsigned int i = 0; \
unsigned char *pIn = (unsigned char *)&(in); \
unsigned char *pRk = (unsigned char *)&rk; \
pRk[0] = pIn[3]; \
pRk[1] = pIn[2]; \
pRk[2] = pIn[1]; \
pRk[3] = pIn[0]; \
rk ^= FK[i++]; \
while (i < 4) \
{ \
sm4CalciRK(rk); \
rk ^= FK[i++]; \
} \
rk ^= *(unsigned int *)pIn; \
}
void sm4_setkey(unsigned int SK[32], unsigned char key[16])
{
unsigned int MK[4];
unsigned int k[36];
unsigned int i = 0;
GET_ULONG_BE(MK[0], key, 0);
GET_ULONG_BE(MK[1], key, 4);
GET_ULONG_BE(MK[2], key, 8);
GET_ULONG_BE(MK[3], key, 12);
k[0] = MK[0] ^ FK[0];
k[1] = MK[1] ^ FK[1];
k[2] = MK[2] ^ FK[2];
k[3] = MK[3] ^ FK[3];
for (; i < 32; i++)
{
sm4CalciRK(k[i + 3]);
sm4F(k[i], k[i + 1], k[i + 2], k[i + 3], SK[i]);
}
}
void sm4_one_round(unsigned char input[16], unsigned char output[16], unsigned int roundKey[32])
{
unsigned int i = 0;
unsigned int ulbuf[36];
memset(ulbuf, 0, sizeof(ulbuf));
GET_ULONG_BE(ulbuf[0], input, 0)
GET_ULONG_BE(ulbuf[1], input, 4)
GET_ULONG_BE(ulbuf[2], input, 8)
GET_ULONG_BE(ulbuf[3], input, 12)
while (i < 32)
{
sm4F(ulbuf[0], ulbuf[1], ulbuf[2], ulbuf[3], roundKey[i]);
i++;
sm4F(ulbuf[1], ulbuf[2], ulbuf[3], ulbuf[0], roundKey[i]);
i++;
sm4F(ulbuf[2], ulbuf[3], ulbuf[0], ulbuf[1], roundKey[i]);
i++;
sm4F(ulbuf[3], ulbuf[0], ulbuf[1], ulbuf[2], roundKey[i]);
i++;
}
PUT_ULONG_BE(ulbuf[3], output, 0);
PUT_ULONG_BE(ulbuf[2], output, 4);
PUT_ULONG_BE(ulbuf[1], output, 8);
PUT_ULONG_BE(ulbuf[0], output, 12);
}
void sm4_crypt_ecb(unsigned char input[16], unsigned char output[16], unsigned int key[32], int enc)
{
unsigned int i = 0;
unsigned char temp[16];
memcpy(temp, input, 16);
sm4_one_round(temp, output, key);
if (enc)
{
for (i = 1; i < 16; i++)
{
temp[i] ^= output[i - 1];
}
}
else
{
for (i = 1; i < 16; i++)
{
temp[16 - i] ^= output[i];
}
}
memcpy(output, temp, 16);
}
void sm4_crypt_cbc(unsigned char iv[16], unsigned char *input,
sm4加密算法c语言
sm4加密算法是一种对称加密算法,其加密和解密使用相同的密钥。以下是使用C语言实现sm4加密算法的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char byte;
typedef unsigned int word;
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (word) (b)[(i) ] << 24 ) \
| ( (word) (b)[(i) + 1] << 16 ) \
| ( (word) (b)[(i) + 2] << 8 ) \
| ( (word) (b)[(i) + 3] ); \
}
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (byte) ( (n) >> 24 ); \
(b)[(i) + 1] = (byte) ( (n) >> 16 ); \
(b)[(i) + 2] = (byte) ( (n) >> 8 ); \
(b)[(i) + 3] = (byte) ( (n) ); \
}
#define SBOX_TABLE_SIZE 256
#define SBOX_SIZE 16
#define SBOX_ROW_SIZE 4
#define SBOX_COL_SIZE 4
static const byte SboxTable[SBOX_TABLE_SIZE] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
/*0*/ 0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05,
/*1*/ 0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99,
/*2*/ 0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62,
/*3*/ 0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6,
/*4*/ 0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8,
/*5*/ 0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35,
/*6*/ 0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87,
/*7*/ 0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e,
/*8*/ 0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1,
/*9*/ 0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3,
/*A*/ 0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f,
/*B*/ 0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51,
/*C*/ 0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8,
/*D*/ 0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0,
/*E*/ 0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84,
/*F*/ 0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48
};
static const word FK[4] = {
0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC
};
static const word CK[32] = {
0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
};
#define ROTL(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
#define L1(x) (x ^ ROTL(x, 2) ^ ROTL(x,10) ^ ROTL(x,18) ^ ROTL(x,24))
#define L2(x) (x ^ ROTL(x,13) ^ ROTL(x,23))
#define ROUND(x0,x1,x2,x3,x4,rk) \
{ \
x4 = x1 ^ x2 ^ x3 ^ rk; \
x4 = L1(x4); \
x0 = x0 ^ x4; \
x4 = L2(x4); \
x1 = x1 ^ x4; \
x2 = x2 ^ x4; \
x3 = x3 ^ x4; \
}
void sm4_setkey_enc(word SK[32], const byte key[16])
{
word MK[4];
word k[36];
int i;
GET_UINT32_BE(MK[0], key, 0);
GET_UINT32_BE(MK[1], key, 4);
GET_UINT32_BE(MK[2], key, 8);
GET_UINT32_BE(MK[3], key, 12);
k[0] = MK[0] ^ FK[0];
k[1] = MK[1] ^ FK[1];
k[2] = MK[2] ^ FK[2];
k[3] = MK[3] ^ FK[3];
for(i=0; i<32; i++)
{
ROUND(k[i], k[i+1], k[i+2], k[i+3], k[i+4], CK[i]);
SK[i] = k[i+4];
}
}
void sm4_crypt_ecb(const word SK[32], int mode, int length, const byte input[], byte output[])
{
word i;
word ulbuf[36];
while(length > 0)
{
GET_UINT32_BE(ulbuf[0], input, 0);
GET_UINT32_BE(ulbuf[1], input, 4);
GET_UINT32_BE(ulbuf[2], input, 8);
GET_UINT32_BE(ulbuf[3], input, 12);
for(i=0; i<32; i++)
{
ROUND(ulbuf[0], ulbuf[1], ulbuf[2], ulbuf[3], ulbuf[4], SK[i]);
}
PUT_UINT32_BE(ulbuf[0], output, 0);
PUT_UINT32_BE(ulbuf[1], output, 4);
PUT_UINT32_BE(ulbuf[2], output, 8);
PUT_UINT32_BE(ulbuf[3], output, 12);
input += 16;
output += 16;
length -= 16;
}
}
int main()
{
byte key[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
byte input[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
byte output[16];
word SK[32];
sm4_setkey_enc(SK, key);
sm4_crypt_ecb(SK, 1, 16, input, output);
printf("Input: ");
for(int i=0; i<16; i++)
{
printf("%02x ", input[i]);
}
printf("\n");
printf("Output: ");
for(int i=0; i<16; i++)
{
printf("%02x ", output[i]);
}
printf("\n");
return 0;
}
```
阅读全文