给定一棵非空二叉树,其结点的数据域为不等于0的整数,请编写程序输出该二叉树中第k层最后一个结点的值,若不存在则输出0。

时间: 2024-05-15 19:18:33 浏览: 85
好的,我明白了。针对您的问题,以下是我的回答: 您可以使用递归的算法来解决这个问题。从根节点开始递归,遍历每一层的节点,并记录当前层的节点数。当递归到第k层时,返回该层最后一个节点的值即可。如果该层不存在,则返回0。 具体实现的代码如下: ```python def findLastNodeValue(root, k, level=1): if root is None: return 0 # 当递归到第k层时,返回该层最后一个节点的值 if k == level: return root.val # 递归遍历左右子树,记录节点数,到第k层时返回结果 left = findLastNodeValue(root.left, k, level+1) right = findLastNodeValue(root.right, k, level+1) # 如果该层不存在,则返回0 if left == 0 and right == 0: return 0 # 如果左子树为空,则返回右子树的结果,反之亦然 return left if right == 0 else right ``` 希望我的回答能够解决您的问题!
相关问题

给定一棵非空二叉树,数据域值为不等于0的整数。请编写程序找出其最深层间隔最远的两个结点,输出这两个结点差的绝对值。请用C++编写

在给定的非空二叉树中找到最深层次间隔最远的两个节点,可以采用深度优先搜索(DFS)和层次遍历(BFS)相结合的方式。首先,我们需要计算每个节点到叶子节点的最大路径长度,然后在这个过程中寻找最大和最小的路径长度差。 以下是一个简单的C++实现: ```cpp #include <vector> #include <queue> struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; int maxDepth(TreeNode* root) { if (root == nullptr) return 0; return 1 + std::max(maxDepth(root->left), maxDepth(root->right)); } pair<int, int> farthestDistanceApart(TreeNode* root) { vector<int> depth(root, root); queue<pair<TreeNode*, int>> q; q.push({root, 0}); while (!q.empty()) { auto [node, level] = q.front(); q.pop(); // 更新当前层的所有节点的深度 depth[level] = std::max(depth[level], node->val); // 如果是叶子节点,将该层的左右边界加到结果中 if (node->left == nullptr && node->right == nullptr) { int leftDiff = level - depth[0]; int rightDiff = depth.back() - level; pair<int, int> result(std::abs(leftDiff), std::abs(rightDiff)); result.first = std::max(result.first, result.second); } // 将子节点加入队列 if (node->left) q.push({node->left, level + 1}); if (node->right) q.push({node->right, level + 1}); } // 返回深度之差最大的一对 return make_pair(depth[0], depth.back()); } ```

编写程序在二叉树中查找给定结点及父结点。二叉树结点的数据域值不等于0的整数

### 回答1: 题目描述:在二叉树中查找给定结点及父结点。二叉树结点的数据域不等于0的整数。 需要在二叉树中查找给定结点以及其父节点,题目给出了二叉树结点数据域不等于0的整数,因此在遍历二叉树时,对于每个结点都需要判断该结点的左右子树是否存在目标结点,如果存在则输出该结点及其父结点即可。 可能的代码实现: ``` class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None def find_node_and_parent(root, target): if not root: return None, None if root.left and root.left.val == target: return root, root.left if root.right and root.right.val == target: return root, root.right left_parent, left_node = find_node_and_parent(root.left, target) if left_node: return left_parent, left_node right_parent, right_node = find_node_and_parent(root.right, target) if right_node: return right_parent, right_node return None, None ``` 其中,TreeNode类表示二叉树的结点,find_node_and_parent函数用于查找目标结点及其父结点。函数接受两个参数,root表示当前遍历到的结点,target表示目标结点的值。如果当前结点为空,说明没有找到目标结点,返回(None, None),否则依次判断当前结点的左右子树是否为目标结点,如果是则直接返回该结点及其父节点;否则递归调用左右子树,并将返回结果作为当前函数的返回结果。 例如,对于二叉树如下所示: 如果要查找结点5及其父节点,则调用find_node_and_parent(root, 5),输出(3, 5);如果要查找结点1及其父节点,则调用find_node_and_parent(root, 1),输出(None, None)。 ### 回答2: 要在二叉树中查找给定结点及父结点,我们可以使用递归的方法进行实现。首先,我们需要定义一个二叉树结构体,其中包括一个数据域值和左右子树指针。然后,我们可以使用以下代码实现给定结点的查找: ``` struct TreeNode { int val; TreeNode* left; TreeNode* right; }; //查找给定值为val的结点及其父结点 void findNode(TreeNode* root, int val, TreeNode* &node, TreeNode* &parent) { if (root == nullptr) { //如果根节点为空,返回空指针 node = nullptr; parent = nullptr; return; } if (root->val == val) { //如果根节点的值等于给定值,返回当前节点和父节点 node = root; parent = nullptr; return; } if (root->left != nullptr && root->left->val == val) { //如果左子树中有给定值,返回左子树的当前节点和父节点 node = root->left; parent = root; return; } if (root->right != nullptr && root->right->val == val) { //如果右子树中有给定值,返回右子树的当前节点和父节点 node = root->right; parent = root; return; } findNode(root->left, val, node, parent); //在左子树中继续查找 if (node == nullptr) { //如果左子树中没有找到,就在右子树中继续查找 findNode(root->right, val, node, parent); } else { //如果左子树中找到了,直接返回 return; } } ``` 在上述代码中,我们使用了引用传递的方式传递指针的指针,以便在函数内部改变指针的指向。函数的基本思路是先判断当前节点是否是给定节点,如果是,则返回当前节点和父节点。如果不是,则在左右子树中继续查找,如果在左子树中找到,则直接返回;如果在右子树中找到,则返回右子树的当前节点和父节点;如果在左右子树中都没有找到,则返回空指针。 要测试我们的函数是否正常工作,我们可以构建一棵二叉树,并调用上述函数进行测试。例如,我们可以构建如下的二叉树: ``` 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 ``` 这棵树的根节点是1,它有两个子节点分别是2和3。2节点有两个子节点4和5,3节点有一个子节点6。5节点有两个子节点7和8。假设我们要查找值为7的节点及其父节点,我们可以调用findNode函数进行查找: ``` TreeNode* node; TreeNode* parent; findNode(root, 7, node, parent); if (node != nullptr) { cout << "node value: " << node->val << endl; } if (parent != nullptr) { cout << "parent value: " << parent->val << endl; } ``` 这里的root是根节点的指针。如果查找成功,将输出“node value: 7”和“parent value: 5”。 ### 回答3: 二叉树是一种在计算机科学中广泛使用的数据结构,它由一个根节点开始,每个节点都有一个最多两个子节点的左子树和右子树。在二叉树中查找给定结点及父结点的程序需要以下基本思路: 首先,我们需要定义一个二叉树结构体,包含数据域值和左右子节点。结构体中还需要定义一个指向父节点的指针,因为需要找到给定结点的父节点。 其次,编写一个函数来实现在二叉树中查找给定结点及父结点。函数需要在树中进行遍历,在每个节点处判断其数据域值是否等于给定结点的值。如果找到了给定结点,记录其父节点;如果遍历完整个树还没有找到,则说明该结点不存在于树中。 最后,运用该函数,输入给定结点的值,即可获得该结点及其父节点的信息。 通过以上步骤,就可以编写程序在二叉树中查找给定结点及其父结点。此外,在实际应用中,还可以加入其他功能,例如向二叉树中插入和删除节点等。总之,二叉树是一种十分实用的数据结构,在编写程序时应用得当,可以大大提高程序的效率,使得程序更加稳定可靠。
阅读全文

相关推荐

大家在看

recommend-type

水利 SWMM PEST++ 自动率定

内容概要:使用PEST++自动率定SWMM模型的参数,实现参数的自动优选 适用人群:水利工作者 使用场景及目标:自动率定SWMM模型的参数 其他说明:也可以自动率定其他模型的参数
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表
recommend-type

安装向导-pro/engineer野火版5.0完全自学一本通

1.3 安装向导 在第一次使用密码机,可以使用管理程序的安装向导功能,逐步完成对密码机 的基本配置。如果需要使用其他配置功能,可参考本章节其他管理操作说明。 安装向导提供以下主要配置功能: a) 初始化密码机:清空所有密钥及管理信息。 b) 管理员初始化:为保证设备的安全性、可靠性,及正常使用所有功能,建议 设置 3 个管理员(标准配置)。 c) 操作员初始化:用于启动密码服务。 d) RSA 密钥管理:产生 RSA 签名密钥对或加密密钥对并保存在密码设备内部。
recommend-type

中南大学943数据结构1997-2020真题&解析

中南大学943数据结构1997-2020真题&解析

最新推荐

recommend-type

递归删除二叉树中以x为根的子树

给定的代码中,定义了一个名为`DelRoot_x`的递归函数,它接受三个参数:一个指向二叉树的引用`T`,一个表示要删除的节点值`x`,以及一个标志变量`flag`。`flag`用于跟踪当前节点是否是x的祖先,如果遇到x,`flag`会...
recommend-type

Termux (Android 5.0+).apk.cab

Termux (Android 5.0+).apk.cab
recommend-type

基于go、vue开发的堡垒机系统(运维安全审计系统)全部资料+详细文档.zip

【资源说明】 基于go、vue开发的堡垒机系统(运维安全审计系统)全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,