import sys from hmmlearn.hmm import MultinomialHMM import numpy as np dice_num = 3 x_num = 8 dice_hmm = MultinomialHMM(n_components=3,n_trials=10) dice_hmm.startprob_ = np.ones(3) / 3.0 dice_hmm.transmat_ = np.ones((3, 3)) / 3.0 dice_hmm.emissionprob_ = np.array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]) dice_hmm.emissionprob_ /= dice_hmm.emissionprob_.sum(axis=1)[:, np.newaxis] X = np.array([[0], [5], [2], [4], [1], [6], [2], [4], [1], [3], [2], [5], [0], [4], [3]]) Z = dice_hmm.decode(X) # 问题A logprob = dice_hmm.score(X) # 问题B # 问题C x_next = np.dot(dice_hmm.transmat_, dice_hmm.emissionprob_) print("state: ", Z) print("logprob: ", logprob) print("prob of x_next: ", x_next)上述代码显示错误ValueError: Size of each quantile should be size of p: received 1, but expected 8.:

时间: 2023-07-02 17:03:52 浏览: 51
这个错误是因为在初始化 MultinomialHMM 时,你使用了参数 n_trials=10,但是这个参数应该是 n_features,即观测值的数量,而不是 n_trials。所以你需要将 n_trials 改为 x_num,即: ```python dice_hmm = MultinomialHMM(n_components=3, n_features=x_num) ``` 这样就可以解决这个错误了。
相关问题

import sys from hmmlearn.hmm import MultinomialHMM import numpy as np dice_num = 3 x_num = 8 dice_hmm = MultinomialHMM(n_components=3,n_features=8,n_trials=5) dice_hmm.startprob_ = np.ones(3) / 3.0 dice_hmm.transmat_ = np.ones((3, 3)) / 3.0 dice_hmm.emissionprob_ = np.array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]) dice_hmm.emissionprob_ /= dice_hmm.emissionprob_.sum(axis=1)[:, np.newaxis] X = np.array([[0], [5], [2], [4], [1], [6], [2], [4], [1], [3], [2], [5], [0], [4], [3]]) Z = dice_hmm.decode(X) # 问题A logprob = dice_hmm.score(X) # 问题B # 问题C x_next = np.dot(dice_hmm.transmat_, dice_hmm.emissionprob_) print("state: ", Z) print("logprob: ", logprob) print("prob of x_next: ", x_next)请修改和完善以上代码

import sys from hmmlearn.hmm import MultinomialHMM import numpy as np dice_num = 3 x_num = 8 dice_hmm = MultinomialHMM(n_components=3, n_features=8) dice_hmm.startprob_ = np.ones(3) / 3.0 dice_hmm.transmat_ = np.ones((3, 3)) / 3.0 dice_hmm.emissionprob_ = np.array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]) dice_hmm.emissionprob_ /= dice_hmm.emissionprob_.sum(axis=1)[:, np.newaxis] X = np.array([[0], [5], [2], [4], [1], [6], [2], [4], [1], [3], [2], [5], [0], [4], [3]]) # 问题A Z = dice_hmm.predict(X) # 问题B logprob = dice_hmm.score(X) # 问题C x_next = np.dot(dice_hmm.transmat_, dice_hmm.emissionprob_) print("state: ", Z) print("logprob: ", logprob) print("prob of x_next: ", x_next)

--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[2], line 8 5 dice_num = 3 6 x_num = 8 ----> 8 dice_hmm = MultinomialHMM(n_components=3, n_features=8) 10 dice_hmm.startprob_ = np.ones(3) / 3.0 11 dice_hmm.transmat_ = np.ones((3, 3)) / 3.0 TypeError: MultinomialHMM.__init__() got an unexpected keyword argument 'n_features'

这个错误提示是因为 MultinomialHMM 类并不支持 n_features 这个参数。如果你需要指定观测值的数量,可以在输入训练数据时进行限制。例如,如果你有一个大小为 N×M 的观测值矩阵 X,其中 N 是观测序列的数量,M 是每个观测序列的长度,那么你可以将 X 转换为一个大小为 N×1 的矩阵,其中每个元素都是一个长度为 M 的观测序列。然后,你可以将这个矩阵作为 MultinomialHMM 的输入训练数据。 以下是一个示例代码片段,演示如何使用 MultinomialHMM 训练具有固定观测值数量的模型: ``` import numpy as np from hmmlearn import hmm # 生成随机观测值矩阵 X np.random.seed(42) X = np.random.randint(1, 7, size=(100, 10)) # 初始化 MultinomialHMM 模型 n_states = 3 dice_hmm = hmm.MultinomialHMM(n_components=n_states) # 训练模型 dice_hmm.fit(X) # 预测模型 logprob, hidden_states = dice_hmm.decode(X) print(hidden_states) ``` 在这个示例中,我们生成了一个大小为 100×10 的观测值矩阵 X。然后,我们初始化了一个具有 3 个隐状态的 MultinomialHMM 模型,使用 X 进行训练,并对 X 进行解码。

相关推荐

最新推荐

recommend-type

HMM_matlab语音识别 代码实现

HMM_matlab代码实现 是以word形式编写 希望可以帮到程序员们
recommend-type

python源码基于mediapipe设计实现人体姿态识别动态时间规整算法DTW和LSTM(长短期记忆循环神经网络.rar

本项目基于Python源码,结合MediaPipe框架,实现了人体姿态识别功能,并进一步采用动态时间规整算法(DTW)和长短期记忆循环神经网络(LSTM)对人体动作进行识别。项目涵盖了从姿态估计到动作识别的完整流程,为计算机视觉和机器学习领域的研究与实践提供了有价值的参考。 MediaPipe是一个开源的多媒体处理框架,适用于视频、音频和图像等多种媒体数据的处理。在项目中,我们利用其强大的姿态估计模型,提取出人体的关节点信息,为后续的动作识别打下基础。DTW作为一种经典的模式匹配算法,能够有效地处理时间序列数据之间的差异,而LSTM则擅长捕捉长时间序列中的依赖关系。这两种算法的结合,使得项目在人体动作识别上取得了良好的效果。 经过运行测试,项目各项功能均表现稳定,可放心下载使用。对于计算机相关专业的学生、老师或企业员工而言,该项目不仅是一个高分资源,更是一个难得的实战演练平台。无论是作为毕业设计、课程设计,还是项目初期的立项演示,本项目都能为您提供有力的支持。
recommend-type

web期末大作业-电影动漫的源码案例.rar

本学期末,我们为您呈现一份精心准备的电影动漫源码案例,它不仅是课程设计的优秀资源,更是您实践技能的有力提升工具。经过严格的运行测试,我们确保该案例能够完美兼容各种主流开发环境,让您无需担心兼容性问题,从而更加专注于代码的学习与优化。 这份案例资源覆盖了前端设计、后端逻辑处理、数据库管理等多个关键环节,旨在为您提供一个全面而深入的学习体验。无论您是计算机专业的在校学生,还是对编程充满热情的爱好者,亦或是希望提升技能的企业员工,这份案例都将为您提供宝贵的实战经验。 此外,我们还特别准备了详细的使用指南和在线支持,确保您在学习和使用的过程中能够得到及时有效的帮助。您可以放心下载和使用这份资源,让它成为您学习道路上的得力助手。让我们携手共进,通过实践探索编程的无限可能!
recommend-type

java图书管理系统毕业设计(源代码+lw).zip

本设计是为图书馆集成管理系统设计一个界面,图书馆集成管理系统是用MICROSOFT VISUAL Foxpro 6.0 来建库(因特殊原因该用 MICROSOFT Access来建库)。它包括: 中文图书数据库; 西文图书数据库; 发行商数据库; 出版商数据库; 读者数据库; 中文期刊数据库; 西文期刊数据库; 中文非印刷资料库; 西文非印刷资料库; 典藏库; 流通库; 预约库; 流通日志库;
recommend-type

项目实战+C#+在线考试系统+毕业项目

该系统主要以在线模拟考试使用为出发点,以提高学生的学习效率和方便学生随时随地检测学习成果为目的,主要采用了DreamweaverMX、FireworksMX、FrontPage软件进行设计、使用ASP开发语言进行编程,所选用的数据库是微软公司开发的Access数据库。 ASP是通过一组统称为ADO的对象模块来访问数据库,ASP提供的ADO对象模块包含6个对象和3个集合,常用的有Connection、 Record set 、Command 、field等对象。 ASP是一种服务器端的指令环境,用来建立并执行请求的交互式WEB服务器端运行的应用程序, ASP程序只能在WEB服务器端执行,当浏览器向服务器要求运行ASP程序时,服务器会读取该程序,然后执行该程序并将结果转换为HTML文件 ,再将HTML文件传送给浏览器,待浏览器收到HTML文件以后,便会将执行结果显示在浏览器上。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。