leach,heed算法matlab仿真

时间: 2023-05-18 12:01:06 浏览: 27
Leach和Heed算法都是无线传感器网络中常用的分簇算法,Leach算法将传感器节点随机分为若干个簇,每个簇有一个簇首节点负责数据汇聚和传输,其他节点将数据通过无线信道传输给簇首节点,从而减少网络能耗和延迟。Heed算法则是基于节点能量和覆盖范围的优化策略,在节点的自主控制下,使得节点能量使用更加均衡和高效。 Matlab作为一款数据分析和模拟软件,是无线传感器网络研究和仿真中广泛使用的工具之一。使用Matlab可以方便地实现Leach和Heed算法的模型,评估网络性能,比较算法的优劣。具体步骤包括:定义网络拓扑结构和节点属性、计算节点能量消耗和剩余能量、随机选择簇首节点、簇首节点汇聚数据、节点数据传输等。 在仿真过程中,可以通过改变节点数量、能量、位置布局、汇聚周期等参数,观察网络的性能,例如网络寿命、时延、数据传输成功率等指标,比较不同算法的效果。此外,还可以考虑优化策略,如节点负载均衡、簇首选择、信道选择等,以提高网络性能和能源利用效率。
相关问题

leach和heed算法仿真对比matlab

leach算法和heed算法都是用于无线传感网络中的簇首选择算法,这两种算法主要的不同点在于其簇首选择的方法不同。 leach算法选择簇首是基于随机化的方法,即每个节点以一定概率选择成为簇首,而其他节点则成为簇成员。leach算法相对简单,簇首的选择具有随机性,可以避免一些节点聚集成簇的情况,但也可能出现节点选择不当导致网络不稳定等问题。 heed算法则是基于能量的方法,每个节点首先对自身电量进行估算,确定自己的能力范围,然后选择能量比较高的节点作为簇首,这样能够保证簇首节点的能力更强,网络的能量消耗也会比较平衡。但是选择簇首时需要考虑节点间的位置关系等复杂因素,所以heed算法的实现难度比较大。 在matlab仿真中,可以通过建立网络模型,设置相关参数进行仿真比较两种算法的性能。例如可以比较网络的稳定性、节点的能量分布、网络传输速率等方面。通过这些比较可以进一步优化算法,提高网络效率和稳定性。

帮我写一个leach算法matlab仿真

好的,下面是一个简单的Leach算法MATLAB仿真示例,供您参考: ```matlab clc clear all close all % 设置仿真参数 numNodes = 100; % 节点数 dimensions = 100; % 网络尺寸 rounds = 50; % 轮数 probability = 0.1; % 阈值概率 initialEnergy = 0.5; % 初始能量 energyTransfer = 50*10^-9; % 能量传输常数 energyReceive = 50*10^-9; % 能量接收常数 thresholdDistance = sqrt(2*dimensions^2/(numNodes*pi)); % 阈值距离 clusterHeads = zeros(1,rounds); % 聚类头节点数 % 初始化节点 for i=1:numNodes node(i).x = rand(1,1)*dimensions; % 节点的x坐标 node(i).y = rand(1,1)*dimensions; % 节点的y坐标 node(i).energy = initialEnergy; % 初始能量 node(i).cluster = 0; % 所属簇的编号 node(i).isClusterHead = 0; % 是否为簇头节点 end % 开始仿真 for r=1:rounds % 第一轮或者所有簇头节点都已经失效,则重新选择簇头节点 if(mod(r,1/probability)==0 || r==1) for i=1:numNodes node(i).isClusterHead = 0; if(node(i).energy>0) if(rand(1,1)<probability) node(i).isClusterHead = 1; node(i).cluster = i; clusterHeads(r) = clusterHeads(r) + 1; end end end end % 非簇头节点发送数据到簇头节点 for i=1:numNodes if(~node(i).isClusterHead && node(i).energy>0) distances = sqrt((node(i).x - [node(node(i).cluster).x]).^2 + (node(i).y - [node(node(i).cluster).y]).^2); [minDistance, idx] = min(distances); if(minDistance <= thresholdDistance) node(node(i).cluster).energy = node(node(i).cluster).energy + energyTransfer*node(i).energy; node(i).energy = node(i).energy - energyTransfer*node(i).energy; end end end % 簇头节点发送数据到基站 for i=1:numNodes if(node(i).isClusterHead && node(i).energy>0) if(sqrt((node(i).x - dimensions).^2 + (node(i).y - dimensions).^2) <= thresholdDistance) node(i).energy = node(i).energy - energyReceive*node(i).energy; end end end % 统计剩余节点数 aliveNodes(r) = sum([node.energy]>0); end % 显示结果 figure(1) plot([node.x], [node.y], 'bo') hold on plot([node(find([node.isClusterHead])).x], [node(find([node.isClusterHead])).y], 'r*') hold on plot(dimensions, dimensions, 'gx') xlabel('X') ylabel('Y') title('Leach Algorithm') legend('节点', '簇头节点', '基站') figure(2) plot(1:rounds, clusterHeads) xlabel('轮数') ylabel('簇头节点数') title('簇头节点数随轮数的变化') figure(3) plot(1:rounds, aliveNodes) xlabel('轮数') ylabel('存活节点数') title('存活节点数随轮数的变化') ``` 该代码实现了Leach算法的基本流程,包括节点的初始化、簇头节点的选择、节点间的数据传输和能量消耗等。您可以根据需要进行修改和调整,并根据结果进行进一步的分析和优化。

相关推荐

LEACH(Low Energy Adaptive Clustering Hierarchy)协议是一种用于无线传感器网络的能量高效路由协议。MATLAB可以用来实现LEACH协议的仿真。以下是实现LEACH协议的MATLAB仿真步骤: 1. 定义传感器节点数目和仿真区域大小 定义传感器节点数目和仿真区域大小,例如: n = 100; % 传感器节点数目 x = rand(1,n)*100; % 仿真区域大小 y = rand(1,n)*100; 2. 定义CH(Cluster Head)节点 定义CH节点,即负责整个簇的数据收集和汇总的节点。可以通过计算节点到BS(Base Station)节点的距离,选择最近的节点作为CH节点,例如: BS = [50 50]; % BS节点坐标 distance = zeros(1,n); for i = 1:n distance(i) = sqrt((x(i)-BS(1))^2+(y(i)-BS(2))^2); % 计算节点到BS节点的距离 end [~,CHindex] = min(distance); % 选择距离最近的节点作为CH节点 3. 簇头选择 使用LEACH协议进行簇头选择,即随机选择节点作为簇头,例如: p = 0.1; % 簇头选择概率 r = rand(1,n); CH = find(r < p); % 随机选择簇头节点 4. 计算节点到CH节点的距离 计算每个节点到CH节点的距离,例如: distanceCH = zeros(n,length(CH)); for i = 1:n for j = 1:length(CH) distanceCH(i,j) = sqrt((x(i)-x(CH(j)))^2+(y(i)-y(CH(j)))^2); % 计算节点到CH节点的距离 end end 5. 节点加入簇 将每个节点加入距离最近的CH节点的簇中,例如: cluster = zeros(1,n); for i = 1:n [~,index] = min(distanceCH(i,:)); cluster(i) = CH(index); % 将节点加入最近的簇 end 6. 计算簇头到BS节点的距离 计算每个簇头节点到BS节点的距离,例如: distanceBS = zeros(1,length(CH)); for i = 1:length(CH) distanceBS(i) = sqrt((x(CH(i))-BS(1))^2+(y(CH(i))-BS(2))^2); % 计算簇头到BS节点的距离 end 7. 节点向簇头节点发送数据 节点向所属的簇头节点发送数据,例如: data = rand(1,n); % 节点数据 for i = 1:n if i ~= CHindex % 非簇头节点 j = cluster(i); data(j) = data(j) + data(i); % 将节点数据累加到簇头节点 end end 8. 簇头节点向BS节点发送数据 簇头节点将所属簇的数据向BS节点发送,例如: dataCH = zeros(1,length(CH)); for i = 1:length(CH) j = CH(i); dataCH(i) = data(j); % 提取簇头节点的数据 end dataBS = sum(dataCH); % 簇头节点向BS节点发送数据 9. 仿真结果可视化 绘制传感器节点、簇头节点和BS节点的分布图,以及节点数据的累加图,例如: figure(1); plot(x,y,'o','MarkerSize',5,'MarkerFaceColor','b'); hold on; plot(x(CH),y(CH),'o','MarkerSize',10,'MarkerFaceColor','r'); plot(BS(1),BS(2),'p','MarkerSize',10,'MarkerFaceColor','g'); xlabel('X'); ylabel('Y'); legend('传感器节点','簇头节点','基站节点'); figure(2); bar(data); xlabel('节点'); ylabel('数据'); 以上是LEACH协议的MATLAB仿真步骤,可以根据需要进行修改和优化。
在使用MATLAB实现WSN中LEACH协议算法仿真前,需要定义以下必须的仿真参数,并给出参数单位和变化的范围: 1. 网络范围(Network Range):定义了节点之间的通信距离,通常以米(m)为单位,范围一般在50-100m之间变化。 2. 簇头选举概率(Cluster Head Election Probability):定义了节点成为簇头的概率,通常为无量纲的概率值,在0到1之间变化。 3. 簇内节点数量(Number of Nodes in a Cluster):定义了每个簇中的节点数量,通常为个数,在10-50之间变化。 4. 数据包大小(Packet Size):定义了节点发送和接收的数据包大小,通常以字节(Byte)为单位,在10-1000字节之间变化。 5. 帧长(Frame Length):定义了节点发送和接收数据包的时间长度,通常以毫秒(ms)为单位,在10-100ms之间变化。 6. 能量消耗参数(Energy Consumption Parameters):定义了节点的能量消耗参数,包括发送能量消耗、接收能量消耗和待机能耗,在单位时间内以焦耳(J)为单位,在0.1-1J之间变化。 7. 簇头轮换周期(Cluster Head Rotation Period):定义了簇头轮换的时间周期,通常以秒(s)为单位,在100-1000s之间变化。 8. 网络节点数量(Number of Network Nodes):定义了网络中的节点数量,通常为个数,在50-500之间变化。 9. 路径损耗指数(Path Loss Exponent):定义了信号在传输过程中的衰减速度,通常为无量纲的指数值,在2-6之间变化。 以上是一些常见的仿真参数,具体的参数定义和变化范围还需要根据具体仿真场景进行调整和确定。
leach算法和deec算法都是无线传感器网络中常用的聚簇算法。 Leach算法是低能耗自适应聚簇层次协议(Low-Energy Adaptive Clustering Hierarchy)的简称。它通过随机选择簇头节点并周期性地重新选择簇头节点来平衡能量消耗。在Leach算法中,节点通过局部通信与基站通信,将通信时间和能量消耗限制在一个可接受的范围内。每个簇头节点负责聚合和压缩传感器节点的数据,并将数据传输给基站。Leach算法具有低能量消耗、均衡网络能量消耗、自适应性等特点,在无线传感器网络中得到了广泛应用。 DEEC算法是分布式能量有效的聚簇协议(Distributive Energy-Efficient Clustering)的简称。它是Leach算法的改进,通过动态选择簇头节点来进一步提高网络的能量效率。DEEC算法引入了节点的能量剩余量因子和节点的距离因子,根据这两个因子来选择簇头节点。节点的能量剩余量因子表示节点的能量剩余情况,越低的节点更有可能成为簇头节点,距离因子表示节点与基站的距离,越靠近基站的节点更有可能成为簇头节点。DEEC算法通过智能节点选择和动态调整参数来加强网络的能量平衡和生命周期。DEEC算法具有较好的能量均衡性和可扩展性,适用于大规模无线传感器网络。 综上所述,Leach算法和DEEC算法都是用于无线传感器网络中的聚簇算法,通过选择簇头节点和动态调整参数来实现能量平衡和延长网络生命周期。这两个算法在节能、自适应性和可扩展性方面都有较好的性能,被广泛应用于无线传感器网络中。
Leach算法是一种用于无线传感器网络中进行能量有效的分簇协议。在Leach算法中,每个传感器节点都有一定的能量,当其能量消耗完毕后,节点就会失效。为了提高网络寿命,我们需要改进Leach算法,使其更加能够有效地利用能量。 首先,我们可以在Leach协议中引入基于距离的能量控制模式,根据节点之间的距离进行能量控制。即对于距离较远的节点,可以采用更低的能量发送数据,而对于距离较近的节点,则采用更高的能量来发送数据,从而使得能量的消耗更为均衡,增加网络寿命。 其次,我们可以引入路由优化技术,对于网络中的数据流量进行优化。通过改变节点之间的路由方式,节约节点之间的跃点数和通信能量,进而减轻节点的能量消耗。通过改变节点之间路由的跃点,可以让更多的节点充当中继节点,增大网络的覆盖范围和传输率,也可以通过节点位置优化,减少能量消耗。 最后, 我们可以考虑引入智能簇头的选举算法。即对于每个簇,选择一个能量较充足并位置较中心的节点作为簇头,从而减少网络开销,转移负载,增强了数据收集是高质量的传输。智能簇头的选举算法可以根据实际网络的特点,设定特定的权重和阈值,以保障网络的可靠性和稳定性。 总之,Leach算法的改进主要集中在能量控制、路由优化以及簇头选举等方向上,这些改进的方法可以提高无线传感器网络的能源利用效率,增加网络的寿命和可靠性。
LEACH (Low Energy Adaptive Clustering Hierarchy) 是一种分簇协议,用于减少无线传感器网络中的能量消耗。通过分簇、轮流担任簇首的方式有效减少了节点间的通信量,延长了系统的生命周期。本文介绍基于 MATLAB 的 LEACH 仿真以及生命周期和能量均衡的问题。 MATLAB 是一种非常优秀的数学软件,可以较方便地进行分布式系统的建模和仿真。在使用 MATLAB 进行 LEACH 仿真时,需要注意以下几点: 1. 首先需要确定仿真的场景,包括节点数目、网络范围、能量消耗模型等。通过这些参数可以确定通信模型和能耗模型,从而进行仿真。 2. 其次,需要实现 LEACH 协议的细节。LEACH 将所有节点分为若干个簇,每个簇选择一个节点作为簇首,其他节点作为簇成员。在不同的轮次中,每个节点轮流成为簇首,负责收集数据和传输数据到基站。 3. 通过仿真可以得到网络的生命周期和能量均衡情况。网络生命周期指的是直到所有节点能量耗尽时的时间。能量均衡则指所有节点在相同的时间内能量耗尽的情况下,所有节点的剩余能量相差不大。 在仿真的过程中,我们可以通过对可视化结果的观察和对仿真数据的分析,来评估网络的能量使用情况和生命周期。如果网络的能量消耗不均衡,需要进行改进,以平衡节点的能量使用情况。此外,可以通过改变网络参数来优化网络性能,比如增加簇的数量、减少节点的通信半径等。 总之,基于 MATLAB 的 LEACH 仿真提供了一个方便、快速的工具,用于分析和优化无线传感器网络中节点的能量消耗和生命周期问题。
GABP算法(Gossip-based Algorithm for Building Prioritized Trees)和LEACH算法(Low Energy Adaptive Clustering Hierarchy)都是无线传感器网络中常用的能量优化算法,用于延长网络寿命和提高能源效率。 首先,GABP算法是一种基于充电路径选择和优先级树构建的分层路由算法。它使用充电路径选择来平衡节点的能量消耗,有效降低传输距离和能量消耗。同时,它利用优先级树构建方式,将能量较低的节点放置在靠近基站的位置,以便能量的集中回收,提高传感器网络的寿命。 相比之下,LEACH算法是一种随机化的簇头选择和簇的构建算法。它将所有节点随机分为若干个簇,并选择一个簇头节点来进行数据传输。这些簇头节点会轮流地进行工作,以便平衡能量消耗。而普通节点则通常只需要将数据传输到簇头节点。 从性能比较方面来看,GABP算法相对于LEACH算法具有一些优点。首先,GABP算法能够明显降低节点之间的距离和传输能量,进而减少了能量消耗。其次,GABP算法通过构建优先级树,使能量较低的节点靠近基站,能够有效延长网络寿命。另外,GABP算法还可以根据网络的不同需求进行灵活调整和优化。 然而,LEACH算法也有其独特的优点。它采用随机化的方式来选取簇头节点,能够更好地平衡能量消耗,并防止网络中某些节点的能量过早耗尽。此外,LEACH算法具有简单和易于部署的特点,因此更适用于资源有限或网络规模较小的传感器网络。 综上所述,GABP算法和LEACH算法都是有效的能量优化算法,但在具体应用场景和实际需求下,根据网络规模、能量消耗等因素来选择合适的算法更为重要。

最新推荐

一种LEACH协议的改进算法LEACH_EH

按照时间先出现了Flooding算法、SPIN算法、SAR算法和定向扩散(Directed Diffusion)等平面路由算法,其后又研究出了LEACH算法、TEEN算法、HEED算法[3]及PEGASIS算法等层次路由算法。LEACH算法由于其不同于以往路由...

小熊猫devc++下载包

小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包小熊猫devc++下载包,非常好用的编辑器

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

lua tm1637

TM1637是一种数字管显示驱动芯片,它可以用来控制4位7段数码管的显示。Lua是一种脚本语言,可以用于嵌入式系统和应用程序的开发。如果你想在Lua中使用TM1637驱动数码管,你需要先获取一个适配Lua的TM1637库或者编写自己的驱动代码。然后,你可以通过该库或者代码来控制TM1637芯片,实现数码管的显示功能。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5