用邻域平均进行彩色图像空间平滑滤波,并用roberts模板进行锐化。
时间: 2023-06-20 22:06:19 浏览: 162
image-process.rar_5*5中值滤波_roberts 锐化_图像锐化算子_平均梯度_邻域平均法
好的,我可以给你一些参考代码。这里假设你已经将彩色图像读入到一个名为`img`的变量中,且为RGB三通道格式。
首先,定义邻域平均函数:
```python
def neighborhood_average(img, x, y, radius):
"""
对图像img在(x,y)位置的像素周围radius个像素的RGB值进行平均,返回平均后的RGB值
"""
r_sum, g_sum, b_sum = 0, 0, 0
count = 0
for i in range(-radius, radius+1):
for j in range(-radius, radius+1):
if x+i < 0 or x+i >= img.shape[0] or y+j < 0 or y+j >= img.shape[1]:
continue
r_sum += img[x+i][y+j][0]
g_sum += img[x+i][y+j][1]
b_sum += img[x+i][y+j][2]
count += 1
r_avg = int(round(r_sum / count))
g_avg = int(round(g_sum / count))
b_avg = int(round(b_sum / count))
return (r_avg, g_avg, b_avg)
```
然后,定义空间平滑函数:
```python
def spatial_smoothing(img, radius):
"""
对图像img进行空间平滑,半径为radius
"""
smoothed_img = np.zeros_like(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
smoothed_img[i][j] = neighborhood_average(img, i, j, radius)
return smoothed_img
```
最后,定义锐化函数,并使用Roberts算子进行锐化:
```python
def sharpen(img):
"""
对图像img进行锐化
"""
sharpened_img = np.zeros_like(img)
for i in range(1, img.shape[0]-1):
for j in range(1, img.shape[1]-1):
gx = img[i+1][j+1] - img[i][j]
gy = img[i+1][j] - img[i][j+1]
g = abs(gx) + abs(gy)
sharpened_img[i][j] = img[i][j] + g
return sharpened_img
```
现在你可以按照如下方式调用这些函数:
```python
import cv2
import numpy as np
# 读入图像
img = cv2.imread('your_image.jpg')
# 进行空间平滑
radius = 5
smoothed_img = spatial_smoothing(img, radius)
# 进行锐化
sharpened_img = sharpen(smoothed_img)
# 显示原图、平滑后的图和锐化后的图
cv2.imshow('Original Image', img)
cv2.imshow('Smoothed Image', smoothed_img)
cv2.imshow('Sharpened Image', sharpened_img)
cv2.waitKey(0)
```
希望这可以帮到你!
阅读全文