[1]通过自定义函数的形式读取给定糖尿病性视网膜病变图像,获取图像的大小、数据类型、颜色模式等信息;[2]将每个像素点的RGB颜色处理到0-1之间; [3]利用k-means、cmeans、 DBSCAN三种 聚类方法对图像的像素进行聚类实现图像分割; [4]输出每种方法分割后的图像并进行对比分析。
时间: 2023-11-22 07:53:35 浏览: 76
利用matlab编写的基于迭代阈值的图像分割函数
好的,以下是实现上述要求的Python代码:
```python
import cv2
import numpy as np
from sklearn.cluster import KMeans
from skimage import color
from sklearn.decomposition import PCA
from sklearn.cluster import DBSCAN
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
# 读取图像信息
def read_image_info(image_path):
img = cv2.imread(image_path)
height, width, channels = img.shape
img_type = img.dtype
color_mode = 'RGB' if channels == 3 else 'grayscale'
return height, width, channels, img_type, color_mode
# 将RGB颜色处理到0-1之间
def normalize_color(img):
return cv2.normalize(img.astype('float'), None, 0.0, 1.0, cv2.NORM_MINMAX)
# K-means聚类
def kmeans_clustering(img, k):
img_array = img.reshape(-1, 3)
kmeans = KMeans(n_clusters=k, random_state=0).fit(img_array)
segmented_img = kmeans.cluster_centers_[kmeans.labels_]
segmented_img = segmented_img.reshape(img.shape)
return segmented_img
# C-means聚类
def cmeans_clustering(img, k):
img_array = img.reshape(-1, 3)
img_array = StandardScaler().fit_transform(img_array)
img_array = PCA(n_components=2).fit_transform(img_array)
cntr, _, _, _, _, _, _ = fuzz.cluster.cmeans(img_array.T, k, 2, error=0.005, maxiter=1000, init=None)
labels = np.argmax(fuzz.cmeans_predict(img_array.T, cntr, 2, error=0.005, maxiter=1000), axis=0)
segmented_img = cntr[labels]
segmented_img = segmented_img.reshape(img.shape)
return segmented_img
# DBSCAN聚类
def dbscan_clustering(img, eps, min_samples):
img_array = img.reshape(-1, 3)
dbscan = DBSCAN(eps=eps, min_samples=min_samples).fit(img_array)
labels = dbscan.labels_
num_clusters = len(set(labels)) - (1 if -1 in labels else 0)
segmented_img = np.zeros_like(img_array)
for i in range(num_clusters):
mask = labels == i
segmented_img[mask] = np.mean(img_array[mask], axis=0)
segmented_img = segmented_img.reshape(img.shape)
return segmented_img
# 聚类并输出结果
def segment_image(image_path, k, eps, min_samples):
height, width, channels, img_type, color_mode = read_image_info(image_path)
img = cv2.imread(image_path)
img = normalize_color(img)
kmeans_segmented_img = kmeans_clustering(img, k)
cmeans_segmented_img = cmeans_clustering(img, k)
dbscan_segmented_img = dbscan_clustering(img, eps, min_samples)
cv2.imshow('Original Image', img)
cv2.imshow('K-means Segmented Image', kmeans_segmented_img)
cv2.imshow('C-means Segmented Image', cmeans_segmented_img)
cv2.imshow('DBSCAN Segmented Image', dbscan_segmented_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 调用segment_image函数进行图像分割
segment_image('diabetic_retinopathy.jpg', 5, 0.3, 10)
```
这段代码实现了对给定的糖尿病性视网膜病变图像进行分割的过程,其中k-means、cmeans、DBSCAN三种聚类方法均被应用。函数read_image_info读取图像的信息,normalize_color将RGB颜色处理到0-1之间,kmeans_clustering使用k-means聚类算法进行分割,cmeans_clustering使用cmeans聚类算法进行分割,dbscan_clustering使用DBSCAN聚类算法进行分割,segment_image函数将上述操作整合起来,并输出每种方法分割后的图像。
阅读全文