RNN Encoder-Decoder
时间: 2023-11-02 14:55:01 浏览: 246
【人工智能学习】【十二】机器翻译及相关技术
RNN Encoder-Decoder是一种常用的序列到序列(Seq2Seq)学习模型,用于处理输入和输出都是变长序列的问题。它由两个RNN组成:Encoder和Decoder。
Encoder将变长的输入序列转换为固定长度的向量表示,称为上下文向量(context vector),并将其传递给Decoder。Decoder使用该上下文向量和先前的输出,生成输出序列。
在训练期间,模型将目标输出序列的每个标记作为输入馈送给Decoder,并根据每个时刻生成的预测与目标输出之间的差异计算损失。在测试期间,模型使用启发式搜索(heuristic search)或束搜索(beam search)等方法,生成输出序列。
RNN Encoder-Decoder模型可以用于各种任务,例如机器翻译、语音识别、对话生成等。但是,RNN Encoder-Decoder模型在处理长序列时可能会出现梯度消失或梯度爆炸的问题,并且不能很好地处理长期依赖关系。因此,后来的模型如LSTM Encoder-Decoder和Transformer Encoder-Decoder等被提出,以解决这些问题。
阅读全文