Scala 编程实现RDD转DataFrame,并选择一个合理的SQL分析。ratings.csv文件 文件里面的内容包含了每一个用户对于每一部电影的评分。数据格式如下: userId, movieId, rating, timestamp movies.csv文件 movieId: 每部电影的Id title:每部电影的名字import org.apache.spark.sql.Row import org.apache.spark.sql.types._
时间: 2023-12-20 08:07:05 浏览: 105
好的,我了解了您的要求。下面是Scala代码实现RDD转DataFrame,并对ratings.csv文件进行分析的示例:
```scala
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.types.{IntegerType, LongType, StructField, StructType}
object RatingsAnalysis {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("RatingsAnalysis")
.master("local[*]")
.getOrCreate()
// 读取ratings.csv文件并转成RDD
val ratingsRDD = spark.sparkContext.textFile("ratings.csv")
.map(line => line.split(","))
.map(fields => (fields(0).toInt, fields(1).toInt, fields(2).toFloat))
// 构建DataFrame的schema
val schema = StructType(
List(
StructField("userId", IntegerType, nullable = false),
StructField("movieId", IntegerType, nullable = false),
StructField("rating", FloatType, nullable = false)
)
)
// 将RDD转成DataFrame
val ratingsDF = spark.createDataFrame(ratingsRDD.map(row => Row.fromTuple(row)), schema)
// 注册成表
ratingsDF.createOrReplaceTempView("ratings")
// 选择一部分数据进行分析
val analysisResult = spark.sql("SELECT movieId, AVG(rating) AS avg_rating, COUNT(*) AS num_ratings FROM ratings WHERE userId <= 50 GROUP BY movieId ORDER BY avg_rating DESC LIMIT 10")
analysisResult.show()
spark.stop()
}
}
```
在这个示例中,我们读取了ratings.csv文件并将其转成了RDD。然后,我们定义了一个DataFrame的schema,将RDD转成DataFrame,并注册成表。最后,我们使用Spark SQL对表进行了查询分析,选择了userId小于等于50的数据,并按照电影的平均评分进行降序排序,最后只显示前10条结果。
这个示例只是一个简单的分析,您可以根据自己的需求进行更复杂的分析。
阅读全文