% % 读取数据 data = readmatrix('G:\19\19\2.xls'); % % % 生成标签 labels = repmat(1:14, 100, 1); labels = labels(:); % % 计算准确率 accuracy = zeros(14, 1); for i = 1:14 start_idx = (i-1)100 + 1; end_idx = i100; accuracy(i) = sum(data(start_idx:end_idx, 1) == labels(start_idx:end_idx)) / 100; end for i = 1:14 idx = find(data(:, 1) == i); correct = sum(data(idx, 2) == i); accuracy(i) = correct / length(idx); end % 生成混淆矩阵 confusionMat = confusionmat(labels, data(:, 2)); figure % newLabels = {'2FSK', 'BPSK', 'CW', 'LFM', 'LFM-BPSK', 'QPSK', 'NLFM', 'FSK-BPSK', 'LFM-FSK', 'MPSK', 'T1', 'T2', 'T3', 'T4'}; % confusionchart(confusionMat,newLabels ,'Normalization', 'row-normalized'); imagesc(confusionMat); colorbar; colormap(flipud(gray)); % 添加数值 textStrings = num2str(confusionMat(:),'%d'); textStrings = strtrim(cellstr(textStrings)); [x, y] = meshgrid(1:size(confusionMat,1), 1:size(confusionMat,2)); hStrings = text(x(:), y(:), textStrings(:), 'HorizontalAlignment', 'center'); midValue = mean(get(gca,'CLim')); textColors = repmat(confusionMat(:) > midValue, 1, 3); labels = {'2FSK', 'BPSK', 'CW', 'LFM', 'LFM-BPSK', 'QPSK', 'NLFM', 'FSK-BPSK', 'LFM-FSK', 'MPSK', 'T1', 'T2', 'T3', 'T4'}; set(gca, 'XTickLabel', labels); set(gca, 'YTickLabel', labels); set(hStrings, {'Color'}, num2cell(textColors, 2));为什么有些标签没有显示出来,怎么修改可以让十四个标签全部显示

时间: 2023-07-16 15:12:41 浏览: 40
可能是因为图表的大小或字体大小导致标签无法全部显示出来。你可以尝试调整图表大小或字体大小来解决这个问题,例如: 1. 调整图表大小 在代码中添加如下语句可以调整图表大小: ``` set(gcf, 'Position', [100, 100, 800, 800]) ``` 其中 `[100, 100]` 是图表左下角的位置,`[800, 800]` 是图表的宽度和高度。 2. 调整字体大小 在代码中添加如下语句可以调整字体大小: ``` set(gca,'FontSize',10) ``` 其中 `10` 是字体大小。你可以根据需要调整这个值。
相关问题

% % 读取数据 data = readmatrix('G:\19\19\2.xls'); % % % 生成标签 labels = repmat(1:14, 100, 1); labels = labels(:); % % 计算准确率 accuracy = zeros(14, 1); for i = 1:14 start_idx = (i-1)100 + 1; end_idx = i100; accuracy(i) = sum(data(start_idx:end_idx, 1) == labels(start_idx:end_idx)) / 100; end for i = 1:14 idx = find(data(:, 1) == i); correct = sum(data(idx, 2) == i); accuracy(i) = correct / length(idx); end % 生成混淆矩阵 confusionMat = confusionmat(labels, data(:, 2)); figure newLabels = {'2FSK', 'BPSK', 'CW', 'LFM', 'LFM-BPSK', 'QPSK', 'NLFM', 'FSK-BPSK', 'LFM-FSK', 'MPSK', 'T1', 'T2', 'T3', 'T4'}; confusionchart(confusionMat,newLabels ,'Normalization', 'row-normalized'); % 将百分比符号添加到矩阵中 h = gca; h.Axes.XTickLabelFormat = '%.1f%%'; h.YAxis.TickLabelFormat = '%.1f%%';这段代码有问题吗?可以画出每个格子内带有百分比的数值的混淆矩阵吗?用2019a的matlab,如果不行,那应该怎么修改呢

这段代码有一些问题: 1. 第一段计算准确率的循环中,变量 `accuracy` 每次都被重新赋值,应该将 `zeros(14, 1)` 放在循环外面,只需要在每次循环中更新对应的元素。 2. 第二段计算准确率的循环中,变量 `accuracy` 又被重新赋值了,这会导致第一段循环中计算的准确率被覆盖掉。可以将第二段循环改为更新 `confusionMat` 的同时计算准确率。 3. 在画混淆矩阵时,标签应该是字符串数组,而不是数字数组。可以将第一段生成标签的代码改为 `labels = repmat(newLabels, 100, 1); labels = labels(:);` 4. 在设置坐标轴标签格式时,应该使用 `YTickLabelFormat` 而不是 `YAxis.TickLabelFormat`。 下面是修改后的代码: ``` data = readmatrix('G:\19\19\2.xls'); % 生成标签 newLabels = {'2FSK', 'BPSK', 'CW', 'LFM', 'LFM-BPSK', 'QPSK', 'NLFM', 'FSK-BPSK', 'LFM-FSK', 'MPSK', 'T1', 'T2', 'T3', 'T4'}; labels = repmat(newLabels, 100, 1); labels = labels(:); % 计算准确率和混淆矩阵 accuracy = zeros(14, 1); confusionMat = zeros(14); for i = 1:14 start_idx = (i-1)*100 + 1; end_idx = i*100; accuracy(i) = sum(data(start_idx:end_idx, 2) == i) / 100; idx = find(labels == newLabels{i}); confusionMat(i, :) = histcounts(data(idx, 1), 1:15); end % 画混淆矩阵 figure confusionchart(confusionMat, newLabels, 'Normalization', 'row-normalized'); h = gca; h.Axes.XTickLabelFormat = '%.1f%%'; h.YTickLabelFormat = '%.1f%%'; ```

data = readmatrix('G:\19\19\2.xls'); % 生成标签 newLabels = {'2FSK', 'BPSK', 'CW', 'LFM', 'LFM-BPSK', 'QPSK', 'NLFM', 'FSK-BPSK', 'LFM-FSK', 'MPSK', 'T1', 'T2', 'T3', 'T4'}; labels = repmat(newLabels, 100, 1); labels = labels(:); % 计算准确率和混淆矩阵 accuracy = zeros(14, 1); confusionMat = zeros(14); for i = 1:14 start_idx = (i-1)*100 + 1; end_idx = i*100; accuracy(i) = sum(data(start_idx:end_idx, 2) == i) / 100; idx = find(labels == newLabels{i}); confusionMat(i, :) = histcounts(data(idx, 1), 1:15); end 画出混淆矩阵后怎么在每个格子内显示数值

可以使用 `text` 函数在每个格子内显示数值。以下是添加数值的代码: ``` % 绘制混淆矩阵 figure; imagesc(confusionMat); colorbar; colormap(flipud(gray)); % 添加数值 textStrings = num2str(confusionMat(:),'%d'); textStrings = strtrim(cellstr(textStrings)); [x, y] = meshgrid(1:size(confusionMat,1), 1:size(confusionMat,2)); hStrings = text(x(:), y(:), textStrings(:), 'HorizontalAlignment', 'center'); midValue = mean(get(gca,'CLim')); textColors = repmat(confusionMat(:) > midValue, 1, 3); set(hStrings, {'Color'}, num2cell(textColors, 2)); ``` 这段代码会在混淆矩阵每个格子内显示对应的数值。

相关推荐

最新推荐

recommend-type

26. 基于视觉的道路识别技术的智能小车导航源代码.zip

1.智能循迹寻光小车(原埋图+PCB+程序).zip 2.智能循迹小车程序.zip 3.智能寻迹小车c程序和驱动.zip 4. 智能小车寻迹(含霍尔测連)c程序,zip 5.智能小车完整控制程序,zip 6.智能小车黑线循迹、避障、遥控实验综合程序,zip 7.智能小车测速+12864显示 C程序,zip 8. 智能小车(循迹、避障、遥控、测距、电压检测)原理图及源代码,zip 9.智能灭火小车,zip 10,智能搬运机器人程序.zip 11.智能arduino小车源程序,z1p 12.-种基于STM32的语音蓝牙智能小车,zip 13.循迹小车决赛程序,zip 14.循迹小车51程序(超声波 颜色识别 舵机 步进电机 1602).zip 15.寻光小车,zip 16.小车测速程序,zip 17.五路循迹智能小车c源码.zip 18.无线小车原理图和程序,zip 19.四驱智能小车资料包(源程序+原理图+芯片手册+各模块产品手册).zip 20.4WD小车安装教程及程序,z1p 21.四路红外循迹小车决赛程序,zip 22,适合初学者借鉴的arduino智能小车代码集合,zip 23.脑电波控制小车,zip 24.蓝牙智能避障小车,zip 25.基于树莓派监控小车源码.zip 26.基于视觉的道路识别技术的智能小车导航源代码,zip 27.基于STM32F407的超声波智能跟随小车,zip 28.基于arduino的蓝牙智能小车,zip.zip 29.基于51的蓝牙智能小车,zip 30.基于51单片机的红外遥控控制小车程序,zip
recommend-type

295_驾校预约管理系统的设计与实现-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

price2016.csv

price2016.csv
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、