举一个例子C语言实现隆博戈算法例子

时间: 2023-09-03 20:28:29 浏览: 86
### 回答1: 隆博戈算法是一种用于对无向图进行最小生成树求解的算法。下面是一个用 C 语言实现隆博戈算法的例子: ``` #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_VERTEX_NUM 20 #define INFINITE 65535 typedef char VertexType; // 顶点类型 typedef int EdgeType; // 边的权值类型 // 图的邻接矩阵存储结构 typedef struct { VertexType vertex[MAX_VERTEX_NUM]; // 顶点表 EdgeType edge[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵 int vertexNum, edgeNum; // 图的当前顶点数和边数 } MGraph; // 最小生成树的结构体 typedef struct { int edge[MAX_VERTEX_NUM]; // 记录当前结点的父节点 int weight; // 记录最小生成树的权值和 } MinSpanTree; // 初始化图 void initGraph(MGraph *G) { int i, j; // 读入顶点数和边数 printf("输入顶点数和边数:\n"); scanf("%d%d", &G->vertexNum, &G->edgeNum); // 读入顶点信息 printf("输入顶点信息:\n"); for (i = 0; i < G->vertexNum; i++) scanf(" %c", &G->vertex[i]); // 初始化邻接矩阵 for (i = 0; i < G->vertexNum; i++) for (j = 0; j < G->vertexNum; j++) G->edge[i][j] = INFINITE; // 读入边的信息 printf("输入每条边对应的两个顶点及权值:\n"); for (i = 0; i < G->edgeNum; ### 回答2: 隆博戈算法(Long-Borgo算法)是一种用于求解连通图的最小生成树问题的算法。这里举一个例子来展示如何使用C语言实现隆博戈算法。 假设有一个连通图,包含5个顶点和6条边,它们的连接关系如下: ``` 顶点:A, B, C, D, E 边:(A, B, 3), (A, C, 2), (B, C, 5), (B, D, 4), (C, D, 6), (C, E, 1) ``` 现在我们使用C语言来实现隆博戈算法,求解这个连通图的最小生成树。 首先,我们需要定义图的顶点和边的数据结构。可以使用结构体来表示顶点和边: ```c typedef struct Edge{ int src, dest, weight; } Edge; typedef struct Graph{ int V, E; Edge* edge; } Graph; ``` 接下来,我们可以编写一个函数来创建一个图: ```c Graph* createGraph(int V, int E){ Graph* graph = malloc(sizeof(Graph)); graph->V = V; graph->E = E; graph->edge = malloc(E * sizeof(Edge)); return graph; } ``` 然后,我们可以编写一个函数来找到图中的最小生成树: ```c int find(int parent[], int i){ if(parent[i] == -1) return i; return find(parent, parent[i]); } void unionSet(int parent[], int x, int y){ int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; } void kruskalMST(Graph* graph){ int V = graph->V; Edge result[V]; int e = 0; int i = 0; qsort(graph->edge, graph->E, sizeof(graph->edge[0]), compare); int parent[V]; memset(parent, -1, sizeof(parent)); while(e < V - 1){ Edge next_edge = graph->edge[i++]; int x = find(parent, next_edge.src); int y = find(parent, next_edge.dest); if(x != y){ result[e++] = next_edge; unionSet(parent, x, y); } } // 输出最小生成树 printf("最小生成树的边:\n"); for(i = 0; i < e; i++){ printf("(%d, %d, %d)\n", result[i].src, result[i].dest, result[i].weight); } } ``` 最后,在主函数中调用上述函数来实现隆博戈算法: ```c int main(){ int V = 5; int E = 6; Graph* graph = createGraph(V, E); graph->edge[0].src = 0; graph->edge[0].dest = 1; graph->edge[0].weight = 3; graph->edge[1].src = 0; graph->edge[1].dest = 2; graph->edge[1].weight = 2; graph->edge[2].src = 1; graph->edge[2].dest = 2; graph->edge[2].weight = 5; graph->edge[3].src = 1; graph->edge[3].dest = 3; graph->edge[3].weight = 4; graph->edge[4].src = 2; graph->edge[4].dest = 3; graph->edge[4].weight = 6; graph->edge[5].src = 2; graph->edge[5].dest = 4; graph->edge[5].weight = 1; kruskalMST(graph); return 0; } ``` 以上就是使用C语言实现隆博戈算法的一个例子。该例子在给定的连通图中找到了最小生成树,并将结果输出到屏幕上。 ### 回答3: 隆博戈算法(Longest Increasing Subsequence,简称LIS)是一种用于寻找数组中最长递增子序列的算法。下面以C语言为例,演示如何使用动态规划实现隆博戈算法。 ```c #include <stdio.h> int lis(int arr[], int n) { int dp[n]; int max = 0; // 初始化dp数组为1 for (int i = 0; i < n; i++) { dp[i] = 1; } // 利用动态规划计算dp数组的值 for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (arr[i] > arr[j] && dp[i] < dp[j] + 1) { dp[i] = dp[j] + 1; } } } // 找到dp数组中的最大值 for (int i = 0; i < n; i++) { if (dp[i] > max) { max = dp[i]; } } return max; } int main() { int arr[] = {10, 22, 9, 33, 21, 50, 41, 60}; int n = sizeof(arr) / sizeof(arr[0]); int result = lis(arr, n); printf("最长递增子序列的长度为:%d\n", result); return 0; } ``` 在上述示例中,我们声明了一个长度为n的数组arr,并用动态规划方法计算出最长递增子序列的长度。最后,我们将结果打印输出,得到最长递增子序列的长度为5。

相关推荐

zip
VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
zip
基于深度强化学习DQN的FlappyBird游戏AI开发 强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。

最新推荐

recommend-type

基于STC32单片机内部RTC的学习计时器+全部资料+详细文档(高分项目).zip

【资源说明】 基于STC32单片机内部RTC的学习计时器+全部资料+详细文档(高分项目).zip基于STC32单片机内部RTC的学习计时器+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

2023新型智慧城市智慧交通专项设计方案[498页Word].docx

2023新型智慧城市智慧交通专项设计方案[498页Word].docx
recommend-type

QT开发的概要介绍与分析

QT开发资源描述 QT是一款功能强大的跨平台应用程序和用户界面开发框架,广泛应用于各种软件项目的开发中。QT提供了丰富的库和工具,使得开发者能够高效地创建出具有专业外观和优秀用户体验的应用程序。 QT开发资源涵盖了从界面设计到后台逻辑实现的全流程。在界面设计方面,QT提供了强大的Qt Designer工具,支持拖拽式布局和丰富的控件库,使得开发者能够直观地设计复杂的用户界面。同时,QT还支持样式表(QSS)和自定义绘图,让界面更加美观和个性化。 在后台逻辑实现方面,QT提供了完整的C++ API,支持多线程、网络编程、数据库访问等功能。开发者可以利用QT的类库和框架,快速实现各种复杂的功能模块。此外,QT还提供了丰富的文档和社区支持,使得开发者在遇到问题时能够迅速找到解决方案。 QT的跨平台特性是其最大的优势之一。开发者只需编写一次代码,就可以在不同的操作系统和平台上运行应用程序。这使得QT成为开发跨平台桌面应用、移动应用和嵌入式系统的理想选择。 总之,QT开发资源为开发者提供了一套完整、高效、易用的开发工具链。通过利用QT提供的丰富资源和强大功能,开发者可以快速构建出高质量
recommend-type

node-v5.4.1-sunos-x86.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

整合了在Unity开发过程中自主开发的实用代码,如摄影机操作,角色操作,控制器交互等。涵盖3D游戏到VR领域。.zip

VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。