请写一段爬取b站视频弹幕的python爬虫代码

时间: 2023-03-12 09:00:03 浏览: 274
爬取b站视频弹幕的python爬虫代码:import requestsurl='https://api.bilibili.com/x/v1/dm/list.so?oid=视频id'headers={ 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36' }res=requests.get(url,headers=headers)danmu=res.json()['dms']for item in danmu: print(item['p'][2],item['c'])
相关问题

python爬虫爬取b站视频数据

### 如何使用 Python 编写爬虫抓取 B 站视频数据 #### 准备工作 为了实现这一目标,需要安装一些必要的库。这些库可以帮助处理 HTTP 请求、解析 JSON 数据以及管理异步操作。 ```bash pip install requests aiohttp bilibili-api-python ``` #### 抓取视频基本信息 通过调用 `bilibili-api` 库中的接口方法可以直接获取到指定 AV/BV 号的视频详情: ```python from bilibili_api import video as bvid_video, sync def fetch_basic_info(bv_id): v = bvid_video.Video(bvid=bv_id) info_dict = sync(v.get_info()) title = info_dict['title'] pub_date = info_dict['pubdate'] # 时间戳形式返回发布时间 return { "标题": title, "发布时间": pub_date } ``` 此部分代码利用了第三方封装好的 API 接口来简化请求过程[^1]。 #### 获取弹幕列表 针对每一条视频记录其对应的 XML 格式的弹幕文件链接,并下载保存至本地;接着读取该文件提取其中的有效字段完成进一步的数据挖掘任务。 ```python import xml.etree.ElementTree as ET from datetime import datetime async def download_danmaku(video_bvid, output_file='danmakus.xml'): vid = bvid_video.Video(bvid=video_bvid) danmu_url = await vid.get_dm_xml() async with aiohttp.ClientSession() as session: resp = await session.get(danmu_url[0]) content = await resp.text() with open(output_file, 'w', encoding='utf8') as f: f.write(content) # 解析XML格式的弹幕文档 def parse_danmaku(file_path): tree = ET.parse(file_path) root = tree.getroot() items = [] for item in root.findall('d'): text = item.text.strip() timestamp_str = float(item.attrib['p'].split(',')[0]) # 提取消息显示的时间轴位置 formatted_time = str(datetime.fromtimestamp(timestamp_str)) items.append({ "content": text, "time": formatted_time }) return items ``` 上述函数实现了从远程服务器拉取特定编号影片关联的所有即时聊天消息并将其转换成易于理解的形式存储下来供后续分析使用[^2]。 #### 清洗与统计分析 对于收集来的原始弹幕资料而言,在正式投入应用之前往往还需要经历一系列预处理环节,比如去除无关字符、过滤敏感词汇等。之后再基于清理后的高质量语料开展诸如词频计算之类的量化研究活动。 ```python import jieba.analyse import matplotlib.pyplot as plt from wordcloud import WordCloud from collections import Counter # 对中文字符串做分词处理 def tokenize(texts_list): words = [] for line in texts_list: seg_result = list(jieba.cut(line)) filtered_words = filter(lambda w: len(w)>1 and not w.isdigit(), seg_result) # 过滤掉单个字母/数字 words.extend(filtered_words) return words # 绘制词云图像 def plot_word_cloud(word_freq_dist): wc = WordCloud(font_path='/path/to/simhei.ttf', background_color="white").generate_from_frequencies(dict(word_freq_dist.most_common())) plt.imshow(wc, interpolation='bilinear') plt.axis("off") plt.show() if __name__ == '__main__': bv_num = input("请输入要查询的BV号:") basic_data = fetch_basic_info(bv_num) print(f'视频名称:{basic_data["标题"]}\n发布日期:{datetime.utcfromtimestamp(int(basic_data["发布时间"]))}') asyncio.run(download_danmaku(bv_num)) parsed_comments = parse_danmaku('./danmakus.xml') all_texts = ''.join([item['content'] for item in parsed_comments]) tokens = tokenize(all_texts.split()) freq_distribution = Counter(tokens) top_keywords = dict(freq_distribution.most_common(50)) # 输出最常见的前五十个关键字及其出现次数 plot_word_cloud(top_keywords) ``` 这段脚本综合运用多种技术手段完成了对所关注对象全面而深入的理解——不仅限于表面层次的信息检索,更涉及到深层次的内容解读和模式识别层面的工作[^3]。

爬虫爬取b站弹幕时间

要爬取B站弹幕的时间,你可以使用爬虫技术来获取。下面是一种可能的实现方式: 1. 首先,你需要安装Python,并安装相关的库,如requests、BeautifulSoup等。 2. 使用requests库发送HTTP请求,获取B站视频页面的HTML源代码。 3. 使用BeautifulSoup库解析HTML源代码,提取出弹幕的相关信息。 4. 在HTML源代码中,弹幕通常以JSON格式存储在一个<script>标签中。你可以使用正则表达式或其他方法提取出这段JSON数据。 5. 解析JSON数据,获取弹幕的时间信息。 6. 对于B站的弹幕,时间通常以秒为单位进行存储。你可以将这些时间转换为你需要的格式,如日期时间格式。 请注意,爬取网站数据时需要遵守相关的法律法规和网站的使用规定。在进行任何爬取操作之前,请确保你已经获得了合法的许可或已经阅读并理解了相关网站的使用条款。
阅读全文

相关推荐

zip
【资源说明】 基于python selenium实现B站直播弹幕和礼物信息爬虫源码+项目操作说明.zip 实现原理: 1.核心:数据去重 直播间网页页面可容纳的弹幕和礼物数据是有限的,且这些数据不断地在更新增加,超过一定量后,将会发生滚动覆盖。 程序每隔一段时间读取一次页面数据,若页面数据没有超出容量,则两次获取的数据在后段会有部分重复。若页面数据已经开始滚动,则两次获取的数据在位置上会发生错位。因此每获取一次数据就需要进行一次比较去重。 **去重原理如下图:(在twice数据列表中寻找与once数据列表末端元素相同的元素,扩展once数据列表。)** **一次去重后,once数据列表可以保留作为数据总列表,而twice数据列表可被新的一批数据覆盖,这样就可以实现重复去重** ![image](https://img.wenhairu.com/images/2021/02/25/EGByH.md.png) 2.主要方法 (1)网页数据定位方法:selenium浏览器对象访问指定直播间url,返回页面源码,再使用xpath定位对应html标签。 (2)加速去重方法:使用线程池,对弹幕和礼物列表同时去重。 (3)运行时长控制:分为两种模式,运行指定时长和运行至直播间关闭。 (4)抓取监控:每进行一次抓取并去重后,使用print输出一次数据列表,以实现对抓取数据的实时监控。 (5)数据抓取频率:分为两种模式,快模式和慢模式,具体可根据弹幕流量和直播间人数选择。快模式每0.5秒左右读一次页面数据,两类数据最大缓存量都为400条;慢模式每1秒左右读一次页面数据,两类数据最大缓存量都为200条。 (6)数据存储:当数据缓存量大于最大缓存量写入csv一次,并清空数据缓存,避免大量数据堆积。 三、使用注意事项 1.python环境下直接运行 (1)模块依赖安装: shell pip install selenium pip install lxml (2)下载浏览器驱动(驱动与浏览器版本一定要对应)(浏览器推荐使用Firefox和Chrome):参考 [爬虫利器selenium和浏览器驱动安装教程](https://blog.csdn.net/qq_44032277/article/details/105793873) (3)修改浏览器驱动路径及配置: python # 如果使用的浏览器是chrome,第97行代码改为: bro = webdriver.Chrome('你的驱动路径', chrome_options = chrome_options) python # 如果使用的浏览器是firefox,删除4行,改为: from selenium.webdriver.firefox.options import Options # 删除94-97行,改为: ff_options = Options() ff_options.add_argument('-headless') bro = webdriver.Firefox('你的驱动路径', firefox_options = ff_options) (4)运行提示:程序在发送请求获取数据时可能因网络不稳定而报错,此时等待其快速重连即可,一般不会影响程序运行。 (5)建议:建议在控制台运行该py源码,因为其清理输出依赖于cmd 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!

最新推荐

recommend-type

Python爬取当当、京东、亚马逊图书信息代码实例

Python爬虫技术是用于自动化获取网页数据的一种方法,尤其在数据挖掘、数据分析等领域广泛应用。本文将探讨如何使用Python来爬取当当、京东、亚马逊这三个知名电商平台上的图书信息。 首先,要实现这个功能,我们...
recommend-type

Python爬虫爬取电影票房数据及图表展示操作示例

在本示例中,我们将探讨如何使用Python进行网络爬虫,以获取电影票房数据,并利用数据分析和可视化库来展示这些数据。首先,我们需要了解Python中的几个关键概念和库: 1. **Python爬虫**:Python提供了一系列强大...
recommend-type

Python爬虫爬取新闻资讯案例详解

Python爬虫爬取新闻资讯案例详解是一篇详细指导如何使用Python进行新闻数据抓取的文章。在互联网时代,新闻资讯的数据量庞大,通过爬虫技术可以有效地自动化获取和分析这些信息。本文将深入探讨如何利用Python的...
recommend-type

Python爬虫实例_城市公交网络站点数据的爬取方法

在本篇《Python爬虫实例_城市公交网络站点数据的爬取方法》中,我们将学习如何使用Python进行网络数据抓取,特别关注于获取城市公交网络站点的数据。首先,我们需要安装必要的库,如`requests`用于发送HTTP请求,...
recommend-type

基于python的百度迁徙迁入、迁出数据爬取(爬虫大数据)(附代码)

接下来,我们将编写Python代码来爬取百度迁徙的数据。这通常涉及到以下步骤: 1. 发送HTTP GET请求到指定的URL,其中包含目标城市编码和日期参数。 2. 解析返回的HTML或JSON数据,提取所需的信息,如日期、城市编码...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。