nn.Embedding(vocab, d_model) 参数及返回的数据结构
时间: 2024-01-27 11:03:01 浏览: 139
`nn.Embedding(vocab, d_model)` 是PyTorch中的一个Embedding层,用于将大小为vocab的词汇表中的每个词嵌入到d_model维的空间中。
参数:
- vocab:表示词汇表的大小,即词的个数。
- d_model:表示单词嵌入的维度。
返回值:
- 一个大小为(vocab, d_model)的张量,其中vocab为词汇表大小,d_model为单词嵌入维度。
使用Embedding层后,输入的词被转换成了对应的向量,可以作为深度学习模型的输入。例如,对于一个大小为(batch_size, seq_length)的输入张量,通过Embedding层后,输出的张量大小为(batch_size, seq_length, d_model),其中每个单词被转换成了一个d_model维的向量。
相关问题
class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x
这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。
该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。
在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。
def __init__(self, config): super(Model, self).__init__() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers, bidirectional=True, batch_first=True, dropout=config.dropout) self.fc = nn.Linear(config.hidden_size * 2, config.num_classes)
这是一个神经网络模型的初始化函数,它包含以下几个部分:
1. 调用父类的初始化函数,即nn.Module的__init__()方法。
2. 根据config中的embedding_pretrained是否为None,选择使用预训练的词向量还是随机初始化的词向量。如果使用预训练的词向量,则调用nn.Embedding.from_pretrained()方法加载预训练的词向量,否则使用nn.Embedding()方法随机初始化词向量。
3. 初始化一个LSTM层,其中输入维度为config.embed,隐藏状态维度为config.hidden_size,层数为config.num_layers,双向LSTM,batch_first设置为True,dropout为config.dropout。
4. 初始化一个全连接层,将LSTM输出的双向隐藏状态拼接后,经过一个线性变换得到最终的输出结果,输出维度为config.num_classes。
这个模型的输入是一个batch的词索引序列,输出是每个样本对应的类别。
阅读全文