Word2vec_train_data = list(map(lambda x: x.split(), X_train))解释一下map函数是啥意思?
时间: 2023-04-02 10:04:12 浏览: 144
map函数是Python内置的高阶函数之一,它可以将一个函数作用于一个可迭代对象的每个元素上,并返回一个新的可迭代对象,其中每个元素都是原可迭代对象中对应元素经过函数处理后的结果。在这个代码中,map函数将lambda函数作用于X_train中的每个元素,将其按空格分割成一个个单词,并返回一个新的列表Word2vec_train_data。
相关问题
from gensim.models import word2vec model = word2vec.Word2Vec.load('C:\\Users\\86157\\Desktop\\Course\\AI\\model_300dim.pkl') from mol2vec.features import mol2alt_sentence,mol2sentence, MolSentence ,DfVec, sentences2vec data['sentence'] = data.apply(lambda x:MolSentence(mol2alt_sentence(x['mol'],1)),axis =1) data['mol2vec'] = [DfVec(x) for x in sentences2vec(data['sentence'], model, unseen='UNK')] X_mol = np.array([x.vec for x in data['mol2vec']]) X_mol = pd.DataFrame(X_mol) X_mol.columns = X_mol.columns.astype(str) new_data = pd.concat((X,X_mol),axis = 1) x_train,x_test,y_train,y_test = train_test_split(new_data,y ,test_size=.20 ,random_state = 1) x_train = StandardScaler().fit_transform(x_train) x_test = StandardScaler().fit_transform(x_test) lr = LogisticRegression(max_iter=10000) lr.fit(x_train,y_train) evaluation_class(lr,x_test,y_test) rf=RandomForestClassifier(max_depth=4,random_state=0) rf.fit(x_train,y_train) evaluation_class(rf,x_test,y_test) sm = svm.SVC(gamma='scale',C=1.0,decision_function_shape='ovr',kernel='rbf',probability=True) sm.fit(x_train,y_train) evaluation_class(sm,x_test,y_test)
这段代码看起来是在进行分子描述符的提取,然后使用不同的分类器进行分类。其中使用了gensim库中的word2vec模型进行分子描述符的提取,使用了mol2vec库中的MolSentence和sentences2vec函数,最后将提取得到的分子描述符和原始数据合并后,使用LogisticRegression、RandomForestClassifier和SVM进行分类,并使用evaluation_class函数进行评估。不过,由于这段代码的上下文缺失,所以无法确定具体的数据集和任务。
阅读全文