如何提取csv文档中具有“2017/4”格式的所有行
时间: 2024-10-19 09:10:06 浏览: 29
要从CSV文件中提取所有包含“2017/4”格式日期的行,你需要首先读取CSV文件内容,然后遍历每一行数据,检查日期是否匹配这种格式。这里提供一种基本的Python脚本示例,使用pandas库:
```python
import pandas as pd
# 读取CSV文件
df = pd.read_csv('your_file.csv') # 将'your_file.csv'替换为你的CSV文件路径
# 定义日期格式匹配函数
def is_date_match(date_column):
return date_column.str.contains(r'\b2017\/4\b', regex=True)
# 应用这个函数到DataFrame中的日期列,假设日期列名为'date'
date_column = df['date']
mask = is_date_match(date_column)
# 使用布尔索引提取匹配行
rows_to_extract = df[mask]
# 输出或保存结果
print(rows_to_extract)
```
在这个例子中,`str.contains`函数用于查找字符串中是否包含模式“2017\/4”,`\b`表示单词边界以防止误匹配。如果日期列不是直接称为'date',请将它替换为你实际的列名。
如果你不确定日期列的名称,可以在读取CSV文件之后查看前几行来确认:
```python
# 查看日期列
print(df.head())
```
相关问题
逐句分析这个文档之中的代码
逐句分析《数据处理.txt》中的代码:
### 导入必要的库
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import signal
from scipy import stats
from pathlib import Path
from functools import reduce
from collections import OrderedDict
import re
from toolz.itertoolz import partial
```
- **导入常用的数据处理和科学计算库**,如 `pandas`、`numpy`、`matplotlib`、`seaborn`、`scipy` 等。
- `pathlib` 用于处理文件路径。
- `functools.reduce` 用于累积操作。
- `collections.OrderedDict` 用于保持字典顺序。
- `re` 用于正则表达式操作。
- `toolz.itertoolz.partial` 用于部分应用函数。
### 设置绘图样式
```python
sns.set(style='ticks')
rcParams['figure.figsize'] = (8, 6)
sns.set_palette("Paired")
```
- **设置 Seaborn 的绘图样式**,包括背景、风格、字体等。
- **设置 Matplotlib 图形的默认尺寸**。
- **设置 Seaborn 的配色方案**。
### 导入机器学习相关的库
```python
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import (
mean_squared_error,
mean_absolute_error,
mean_absolute_percentage_error,
median_absolute_error,
r2_score,
explained_variance_score
)
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.model_selection import cross_validate, RepeatedKFold
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler
```
- **导入 Scikit-Learn 的各种模块**,包括模型选择、集成学习、评估指标、基类、管道、交叉验证、超参数搜索和预处理工具。
### 注释:Scikit-Learn 文档参考
```python
"""
See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
and https://github.com/scikit-learn/blob/main/sklearn/ensemble/_stacking.py
for example of scikit-learn style of documentation.
Interesting to see the option "hide/show prompts and output" in
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
"""
```
- **提供 Scikit-Learn 文档的链接**,特别是关于 `StackingClassifier` 的详细说明。
- 提到文档中的隐藏/显示提示和输出选项。
### 注释:信号处理和特征提取的关键函数及待办事项
```python
"""
For hyper-parameter search, some candidates are:
- `method` in `aggregate_spectra()` (e.g., 'mean')
- `smoother` in `convolve_spectrum()` (e.g., signal.windows.gaussian(51, std=7))
- `get_peaks()` has `base_level` and `max_no_peaks`
Key functions are (see _the_whole_pp_pipeline_example()):
- read_spectra_dataset()
- get_freq_bands_cut_points()
- extract_features_from_spectrum()
TO DO:
- [x] make `extract_features_from_spectrum` a key method that generalises and possible uses get_freq_vel_per_band
- [x] could have switches for groups of features to extract
- [ ] I'll initially have separate functions for extracting the groups of features from a spectrum
- [x] Hopefully, all that the Pumpflow Feature Extraction Transformer does with `.transform` is to apply `extract_features_from_spectrum` to each row in `X`
- [x] For feature engineering, look also at shape of distribution in each band and extract moments; computing the integral of the curve (whole and within each band)
- [ ] I would love to be able to label the frequency bands in the plot (tiny font, no-frills implementation would do)
- [ ] More flexibility in hypp search
"""
```
- **列出超参数搜索的候选者**,包括 `aggregate_spectra`、`convolve_spectrum` 和 `get_peaks` 函数的参数。
- **介绍关键函数**,包括读取频谱数据集、获取频率带切割点和从频谱中提取特征。
- **列出待办事项**,包括改进 `extract_features_from_spectrum` 函数、添加特征提取开关、分离特征提取函数、计算分布形状和曲线积分等。
### 定义读取速度谱数据的函数
```python
def read_vel_spectrum(p):
"""
Returns a Series for the velocity spectrum data specified by `p`.
p is a path-like object (here, a PosixPath relative to the current directory is the default one).
Example:
local_base_dir = Path('../shared-dropbox/Test Data/')
p = local_base_dir / 'Oil/Oil Run 1 - 0-25m3 - 17.05.22/Accelerometer Data - 17.05.22/10.5 m3hr/VXP Machine Spectrum -l-600 rpm - Vel/Spectrum Velocity 1.csv'
df = read_vel_spectrum(p)
>>> df.head()
freq
0.00 0.007059
0.25 0.018643
0.50 0.007059
0.75 0.003258
1.00 0.001267
Name: vel, dtype: float64
"""
df = pd.read_csv(p, skiprows=6, index_col=False)
df.columns = ['freq', 'vel']
return df.set_index('freq').squeeze()
```
- **定义 `read_vel_spectrum` 函数**,读取指定路径的 CSV 文件,返回一个包含频率和速度的 Series 对象。
- **跳过文件开头的 6 行**,并将列名设置为 `freq` 和 `vel`。
- **将 `freq` 列设置为索引**,并返回一个 Series 对象。
### 定义提取流量率的函数
```python
def extract_flow_rate(p):
"""
p is a path-like object (here, a PosixPath relative to the current directory is the default one).
Returns a float (converted from the substring (e.g., '10.5'))
Example:
p = local_base_dir / 'Oil/Oil Run 1 - 0-25m3 - 17.05.22/Accelerometer Data - 17.05.22/10.5 m3hr/VXP Machine Spectrum -l-600 rpm - Vel/Spectrum Velocity 1.csv'
>>> extract_flow_rate(p)
10.5
"""
return float(re.findall(r'([0-9\.]+?) m3hr', str(p))[0])
```
- **定义 `extract_flow_rate` 函数**,从路径中提取流量率。
- **使用正则表达式** `r'([0-9\.]+?) m3hr'` 匹配流量率的字符串,并转换为浮点数。
### 定义读取所有速度谱数据的函数
```python
def read_all_vel_spectra(p):
"""
p is where all flow rates subdirectories are placed (see preamble)
(e.g., `../shared-dropbox/Test Data/Oil/Oil Run 1 - 0-25m3/Accelerometer Data - 17.05.22/`)
returns -> dict(target: str, df: DataFrame)
Example:
local_base_dir = Path('../shared-dropbox/Test Data/')
local_exp_base_dir = local_base_dir / 'Oil/Oil Run 1 - 0-25m3 - 17.05.22/Accelerometer Data - 17.05.22'
dfs = read_all_vel_spectra(local_exp_base_dir)
>>> dfs[5.0].head()
freq
0.00 0.006878
0.25 0.019187
0.50 0.007602
0.75 0.002896
1.00 0.001810
Name: vel, dtype: float64
"""
paths_all_spectrum_vel_files = list(p.glob('**/*Spectrum*Vel*.csv'))
dfs = OrderedDict([(extract_flow_rate(p), read_vel_spectrum(p)) for p in paths_all_spectrum_vel_files])
return dfs
```
- **定义 `read_all_vel_spectra` 函数**,读取指定目录下的所有速度谱文件,返回一个有序字典,键为流量率,值为对应的 DataFrame。
- **使用 `glob` 方法** 找到所有符合条件的文件路径。
- **遍历每个文件路径**,提取流量率并读取速度谱数据。
### 定义合并频谱数据的函数
```python
def combine_spectra(dfs):
"""
concat_spectra has been deprecated in favour `combine_spectra()` for flow rate samples as rows (easier to sample for machine learning purposes).
`dfs` is an output from read_all_vel_spectra()
returns a DataFrame with the combined spectra.
Makes the assumption that they share the exact same structure; data is merged based on Series index.
Example:
local_base_dir = Path('../shared-dropbox/Test Data/')
local_exp_base_dir = local_base_dir / 'Oil/Oil Run 1 - 0-25m3 - 17.05.22/Accelerometer Data - 17.05.22'
dfs = read_all_vel_spectra(local_exp_base_dir)
cmb_spectra = combine_spectra(dfs)
>>> cmb_spectra.iloc[:5, :5]
freq 0.00 0.25 0.50 0.75 1.00
0.0 0.007059 0.019368 0.007602 0.003439 0.002172
0.5 0.006697 0.019730 0.009050 0.005611 0.006335
1.0 0.006878 0.019549 0.007964 0.003258 0.001810
1.5 0.007240 0.019368 0.007421 0.002896 0.001629
2.0 0.005792 0.018462 0.007421 0.002896 0.000543
"""
cmb_spectra_w = pd.concat(dfs.values(), axis='columns')
cmb_spectra_w.columns = dfs.keys()
cmb_spectra_w = cmb_spectra_w.reindex(columns=cmb_spectra_w.columns.sort_values())
cmb_spectra_w.index.name = 'freq'
cmb_spectra_w.columns.name = 'flow_rate'
cmb_spectra = cmb_spectra_w.T
return cmb_spectra
```
- **定义 `combine_spectra` 函数**,将多个频谱数据合并成一个 DataFrame。
- **假设所有频谱具有相同的结构**,基于索引进行合并。
- **按流量率排序** 并转置 DataFrame,使流量率为行索引,频率为列索引。
### 定义读取频谱数据集的函数
```python
def read_spectra_dataset(p):
"""
From `p`, the path-like object specifying the base directory for the recorded experiments, returns a flow_rate-freq velocity DataFrame.
Example:
local_base_dir = Path('../shared-dropbox/Test Data/')
p = local_base_dir / 'Oil/Oil Run 1 - 0-25m3 - 17.05.22/Accelerometer Data - 17.05.22'
df = read_spectra_dataset(p)
df.iloc[:3, :3]
"""
dfs = read_all_vel_spectra(p)
return combine_spectra(dfs)
```
- **定义 `read_spectra_dataset` 函数**,读取指定目录下的所有频谱数据并合并成一个 DataFrame。
### 定义将合并后的频谱转换为长格式的函数
```python
def melt_combined_spectra(df):
"""
Working with a long format can be sometimes more convenient than a tabulated one.
`combine_spectra` will produce something typically in the shape (n, m), where `n` is number of flow rates experimented with and `m` is the number of frequencies in the spectrum.
That is, a flow_rate x frequency matrix with velocities as values.
Example:
>>> melt_combined_spectra(cmb_spectra.iloc[:3,:3])
freq vel flow_rate
0.00 0.007059 0.0
0.00 0.006697 0.5
0.00 0.006878 1.0
0.25 0.019368 0.0
0.25 0.019730 0.5
0.25 0.019549 1.0
0.50 0.007602 0.0
0.50 0.009050 0.5
0.50 0.007964 1.0
"""
return (df
.rename_axis('index', axis=0)
.reset_index()
.rename(columns={'index': 'flow_rate'})
.melt(id_vars='flow_rate')
.rename(columns={'value': 'vel'})
.set_index('flow_rate')
)
```
- **定义 `melt_combined_spectra` 函数**,将合并后的频谱数据转换为长格式,便于某些操作。
### 定义聚合频谱数据的函数
```python
def aggregate_spectra(cmb_spectra, method='mean'):
"""
Aggregate spectrum (for all flow rates) by frequency.
cmb_spectra: output from combine_spectra()
method: anything that group-by's `agg` can accept as `func`: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.agg.html
Example:
>>> cmb_spectra.iloc[:3, :3]
freq 0.00 0.25 0.50
0.0 0.007059 0.019368 0.007602
0.5 0.006697 0.019730 0.009050
1.0 0.006878 0.019549 0.007964
>>> aggregate_spectra(cmb_spectra.iloc[:3, :3])
vel
freq
0.00 0.006878
0.25 0.019549
0.50 0.008206
"""
cmb_spectra_melt = melt_combined_spectra(cmb_spectra)
agg_spectrum = (cmb_spectra_melt
.reset_index()
.groupby('freq')
.agg({'vel': method})
.squeeze()
)
return agg_spectrum
```
- **定义 `aggregate_spectra` 函数**,按频率聚合频谱数据。
- **支持多种聚合方法**,如均值、求和等。
### 定义绘制频谱图的函数
```python
def plot_spectrum(spectrum, ax=None, style_kws=None, xlabel='Frequency (Hz)', ylabel='Power (mm/s)'):
"""
A convenience method for plotting a spectrum.
The latter is expected to be a Series with frequency as index and velocity as value.
TO DO:
- [ ] add style_kws for the signal's line
Example:
fig, axs = plt.subplots(2, 2, constrained_layout=True)
titles = [ 'avg', 'sum', 'max', 'top_decile']
my_plot_funcs = [
partial(plot_spectrum, aggregate_spectra(cmb_spectra)),
partial(plot_spectrum, aggregate_spectra(cmb_spectra, method='sum')),
partial(plot_spectrum, aggregate_spectra(cmb_spectra, method='max')),
partial(plot_spectrum, aggregate_spectra(cmb_spectra, method=partial(np.quantile, q=0.9)))
]
for ax, func, title in zip(axs.ravel(), my_plot_funcs, titles):
func(ax=ax)
ax.set_title(title)
"""
if ax is None:
_, ax = plt.subplots()
style = dict(color='C1')
if isinstance(style_kws, dict):
style = { **style, **style_kws }
ax.plot(spectrum.index, spectrum, **style)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
```
- **定义 `plot_spectrum` 函数**,绘制频谱图。
- **支持自定义绘图样式** 和轴标签。
### 定义默认的汉宁窗和平滑器
```python
DEFAULT_WINDOW_SIZE = 50
DEFAULT_STD = 7
def get_default_hann_smoother():
return signal.windows.hann(DEFAULT_WINDOW_SIZE * 2 + 1)
def get_default_gaussian_smoother():
return signal.windows.gaussian(DEFAULT_WINDOW_SIZE, DEFAULT_STD)
```
- **定义默认的汉宁窗和平滑器**,用于频谱平滑。
### 定义卷积频谱的函数
```python
def convolve_spectrum(spectrum,
sheetjs中文文档
### 回答1:
SheetJS(又称为SheetJS Community Edition、js-xlsx等)是一个用于处理电子表格数据的JavaScript库。它支持多种电子表格文件格式,包括Excel、OpenDocument、CSV等。同时,SheetJS也提供了一些方便的API,使得在JavaScript中读取和写入电子表格数据变得更加容易。在网上可以找到很多SheetJS的中文文档和教程,例如在CSDN等社区中都有相关的文章。
### 回答2:
SheetJS是一个用于解析和处理电子表格文件(如Excel、CSV等)的JavaScript库。它为开发者提供了一种方便快捷的方法来读取、写入和操作电子表格数据。
使用SheetJS,开发者可以通过简单的代码将电子表格文件导入到网页中,并可以按需提取其中的数据。它支持各种电子表格文件格式,包括.xlsx、.xls、.csv等,同时也支持加密和压缩等特性。
SheetJS提供了许多功能强大的API,可以对导入的数据进行各种操作,如排序、筛选、合并、拆分等。开发者可以根据需要来处理数据,并具有灵活的控制权限。
除了读取和处理电子表格文件,SheetJS还可以将数据导出为不同的电子表格文件格式。开发者可以将数据导出为.xlsx、.xls、.csv等格式,以便于其他应用程序使用。
SheetJS提供了详细的中文文档,方便开发者学习和使用。文档中包含了库的安装指南、基本用法、API说明以及示例代码等内容,帮助开发者理解和使用SheetJS。
总之,SheetJS是一个功能强大且易于使用的JavaScript库,能够方便地解析和处理电子表格文件。它的中文文档提供了全面的开发指南,是开发者处理电子表格数据的理想选择。
阅读全文