如何用c语言实现红黑树以及什么是红黑树
时间: 2023-12-04 18:41:35 浏览: 190
红黑树是一种自平衡二叉查找树,它能够保证在最坏情况下基本动态集合操作的时间复杂度为O(log n)。红黑树的节点有红色和黑色之分,它们必须满足以下5个性质:
1. 每个节点要么是红色,要么是黑色。
2. 根节点是黑色的。
3. 每个叶子节点(NIL节点,空节点)是黑色的。
4. 如果一个节点是红色的,则它的两个子节点都是黑色的。
5. 对于每个节点,从该节点到其所有后代叶子节点的简单路径上,均包含相同数目的黑色节点。
以下是用C语言实现红黑树的基本步骤:
1. 定义红黑树节点的结构体,包括节点的颜色、键值、左右子节点等信息。
2. 定义红黑树的结构体,包括根节点、NIL节点等信息。
3. 实现红黑树的旋转操作,包括左旋和右旋。
4. 实现红黑树的插入操作,包括插入节点、调整节点颜色和旋转等操作。
5. 实现红黑树的删除操作,包括删除节点、调整节点颜色和旋转等操作。
6. 实现红黑树的查找操作,与普通二叉树的查找类似。
7. 实现红黑树的遍历操作,包括前序遍历、中序遍历和后序遍历。
以下是一个简单的C语言实现红黑树的例子,仅供参考:
```c
#include <stdio.h>
#include <stdlib.h>
#define RED 0
#define BLACK 1
typedef int KEY_TYPE;
typedef struct rbtree_node {
int color;
KEY_TYPE key;
struct rbtree_node *left;
struct rbtree_node *right;
struct rbtree_node *parent;
} rbtree_node;
typedef struct rbtree {
rbtree_node *root;
rbtree_node *nil;
} rbtree;
rbtree_node *rbtree_create_node(KEY_TYPE key, int color, rbtree_node *nil) {
rbtree_node *node = (rbtree_node *)malloc(sizeof(rbtree_node));
node->key = key;
node->color = color;
node->left = nil;
node->right = nil;
node->parent = nil;
return node;
}
void rbtree_left_rotate(rbtree *T, rbtree_node *x) {
rbtree_node *y = x->right;
x->right = y->left;
if (y->left != T->nil) {
y->left->parent = x;
}
y->parent = x->parent;
if (x->parent == T->nil) {
T->root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->left = x;
x->parent = y;
}
void rbtree_right_rotate(rbtree *T, rbtree_node *y) {
rbtree_node *x = y->left;
y->left = x->right;
if (x->right != T->nil) {
x->right->parent = y;
}
x->parent = y->parent;
if (y->parent == T->nil) {
T->root = x;
} else if (y == y->parent->left) {
y->parent->left = x;
} else {
y->parent->right = x;
}
x->right = y;
y->parent = x;
}
void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {
while (z->parent->color == RED) {
if (z->parent == z->parent->parent->left) {
rbtree_node *y = z->parent->parent->right;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent;
} else {
if (z == z->parent->right) {
z = z->parent;
rbtree_left_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_right_rotate(T, z->parent->parent);
}
} else {
rbtree_node *y = z->parent->parent->left;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent;
} else {
if (z == z->parent->left) {
z = z->parent;
rbtree_right_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_left_rotate(T, z->parent->parent);
}
}
}
T->root->color = BLACK;
}
void rbtree_insert(rbtree *T, KEY_TYPE key) {
rbtree_node *y = T->nil;
rbtree_node *x = T->root;
while (x != T->nil) {
y = x;
if (key < x->key) {
x = x->left;
} else {
x = x->right;
}
}
rbtree_node *z = rbtree_create_node(key, RED, T->nil);
z->parent = y;
if (y == T->nil) {
T->root = z;
} else if (key < y->key) {
y->left = z;
} else {
y->right = z;
}
rbtree_insert_fixup(T, z);
}
rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {
rbtree_node *node = T->root;
while (node != T->nil) {
if (key < node->key) {
node = node->left;
} else if (key > node->key) {
node = node->right;
} else {
return node;
}
}
return T->nil;
}
void rbtree_inorder_walk(rbtree *T, rbtree_node *node) {
if (node != T->nil) {
rbtree_inorder_walk(T, node->left);
printf("%d ", node->key);
rbtree_inorder_walk(T, node->right);
}
}
int main() {
rbtree T;
T.nil = (rbtree_node *)malloc(sizeof(rbtree_node));
T.nil->color = BLACK;
T.root = T.nil;
rbtree_insert(&T, 5);
rbtree_insert(&T, 3);
rbtree_insert(&T, 7);
rbtree_insert(&T, 2);
rbtree_insert(&T, 4);
rbtree_insert(&T, 6);
rbtree_insert(&T, 8);
rbtree_inorder_walk(&T, T.root);
return 0;
}
```
阅读全文