CLKFX_DIVIDE

时间: 2024-01-24 09:16:10 浏览: 23
CLKFX_DIVIDE是一个属性,用于动态设置时钟频率综合器(DFS)中的时钟分频比。它可以将输入时钟CLKIN分频为更低的频率。通过调整CLKFX_DIVIDE的值,可以实现对输出时钟CLKFX的频率进行精确控制。 以下是一个示例代码,演示如何使用CLKFX_DIVIDE属性来设置时钟分频比: ```python import pydfsdb # 创建DFS对象 dfs = pydfsdb.DFS() # 设置输入时钟CLKIN和CLKFB dfs.CLKIN = 100 # 输入时钟频率为100 MHz dfs.CLKFB = 50 # 反馈时钟频率为50 MHz # 设置CLKFX_DIVIDE属性 dfs.CLKFX_DIVIDE = 2 # 将输入时钟分频为一半 # 获取输出时钟CLKFX的频率 clkfx_frequency = dfs.CLKFX print("CLKFX frequency: ", clkfx_frequency) # 输出CLKFX的频率 ``` 在上述示例中,我们创建了一个DFS对象,并设置了输入时钟CLKIN和CLKFB的频率。然后,我们使用CLKFX_DIVIDE属性将输入时钟分频为一半,并通过dfs.CLKFX获取输出时钟CLKFX的频率。
相关问题

spartan3 调用pll

在Spartan-3 FPGA中,您可以使用Digital Clock Manager (DCM)来实现PLL。要使用PLL,您需要先实例化DCM并将其配置为所需的时钟频率和相位。 下面是一个实例化DCM的VHDL代码: ```vhdl -- 实例化DCM并将其配置为将输入时钟频率提高4倍 -- 并将输出时钟频率设置为100MHz -- 这里使用的输入时钟频率为50MHz library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity DCM_example is Port ( clk_in : in STD_LOGIC; clk_out : out STD_LOGIC; reset : in STD_LOGIC); end DCM_example; architecture Behavioral of DCM_example is -- DCM的输入时钟频率为50MHz constant F_IN : integer := 50_000_000; -- DCM的输出时钟频率为100MHz constant F_OUT : integer := 100_000_000; -- 计算DCM的输出分频系数 constant DIVIDE : integer := F_IN / F_OUT; -- 实例化DCM component DCM_SP is generic ( CLKIN_PERIOD : time := 20 ns; CLKFX_MULTIPLY : integer := 4; CLKFX_DIVIDE : integer := DIVIDE; CLKFX_MD_MAX : integer := 0; CLKFX_MULTIPLY_FRACT : integer := 0; CLKFX_DIVIDE_FRACT : integer := 0; CLKFBOUT_MULT_F : STD_LOGIC := '0'; CLKFBOUT_PHASE : STD_LOGIC := '0'; CLKFBOUT_USE_FINE_PS : STD_LOGIC := '0'; REF_JITTER : time := 0.2 ns; CLKIN_DIVIDE_BY_2 : boolean := false; STARTUP_WAIT : boolean := false ); port ( CLKIN : in STD_LOGIC; CLKFBIN : in STD_LOGIC; RST : in STD_LOGIC; CLKFX : out STD_LOGIC; CLKFBOUT : out STD_LOGIC; LOCKED : out STD_LOGIC ); end component DCM_SP; -- 将DCM实例化并将其连接到输入时钟信号 -- 这里假设使用的时钟信号为50MHz -- 如果使用其他时钟信号,需要相应地调整CLKIN_PERIOD参数 -- 这里的CLKFBIN连接到CLKFX,表示使用反馈时钟输出 -- LOCKED输出表示DCM已经锁定 signal locked : STD_LOGIC; signal clkfb : STD_LOGIC; signal clkfx : STD_LOGIC; begin DCM_inst : DCM_SP generic map ( CLKIN_PERIOD => 20 ns, -- 输入时钟周期 CLKFX_MULTIPLY => 4, -- 输出时钟频率是输入时钟频率的4倍 CLKFX_DIVIDE => DIVIDE -- 输出时钟分频系数 ) port map ( CLKIN => clk_in, -- 输入时钟 CLKFBIN => clkfx, -- 反馈时钟 RST => reset, -- 复位信号 CLKFX => clkfx, -- 输出时钟 CLKFBOUT => clkfb, -- 反馈时钟输出 LOCKED => locked -- 锁定信号 ); -- 将输出时钟连接到clk_out端口 clk_out <= clkfx; end Behavioral; ``` 在上面的代码中,我们实例化了一个名为DCM_inst的DCM,并将其配置为将输入时钟频率提高4倍,将输出时钟频率设置为100MHz。我们还将输入时钟信号连接到DCM_inst的CLKIN端口,将输出时钟信号连接到clk_out端口。 注意,在实例化DCM时,我们需要根据输入时钟频率和输出时钟频率来计算输出分频系数。在上面的代码中,我们使用常量DIVIDE来保存输出分频系数的值。 此外,我们还将DCM的锁定信号连接到了一个名为locked的信号上。当DCM锁定时,locked信号将变为逻辑高电平。在实现PLL时,我们通常需要使用locked信号来确保输出时钟已经稳定。

相关推荐

zip
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。