给我一个一百个节点随机分布在二维平面,然后用SIR模型进行无线传感器网络关键节点检测的matlab代码

时间: 2024-04-18 16:30:48 浏览: 13
以下是一个基于SIR模型的无线传感器网络关键节点检测的Matlab代码,其中包括生成随机节点分布和使用SIR模型进行关键节点检测的过程: ```matlab N = 100; % 网络中节点的总数 beta = 0.2; % 感染概率 gamma = 0.1; % 恢复概率 timesteps = 10; % 时间步长 radius = 0.01; % 给定半径 % 初始化节点状态 state = zeros(N, 3); % 节点状态矩阵:每行表示一个节点的状态 [S I R] % 生成二维平面上的随机节点分布 positions = rand(N, 2); % 每行表示一个节点的坐标位置 % 随机选择一个节点作为初始感染节点 initial_infected_node = randi(N); state(initial_infected_node, :) = [0 1 0]; % 节点初始状态 [S I R] % 输出随机选出的初始感染节点 disp(['Initial infected node: ', num2str(initial_infected_node)]); % 创建可视化窗口 figure; % 开始仿真 for t = 1:timesteps % 绘制节点状态图 scatter(positions(:, 1), positions(:, 2), [], state(:, 2), 'filled'); % 设置坐标轴和标题 xlabel('X'); ylabel('Y'); title(['Simulation of Epidemic Spread (Time step: ', num2str(t), ')']); % 刷新图形窗口 drawnow; % 添加延迟以实现动态效果 pause(0.9); % 更新节点状态 for node = 1:N % 如果节点已经是免疫态R,则跳过 if state(node, 3) == 1 continue; end % 如果节点处于易染态S if state(node, 1) == 1 % 计算与该节点相连的感染态邻节点数量 distances = sqrt(sum((positions - repmat(positions(node, :), N, 1)).^2, 2)); infected_neighbors = sum(state(distances <= radius, 2)); % 根据感染概率决定是否被感染 if rand <= beta * infected_neighbors / N state(node, :) = [0 1 0]; % 节点变为感染态I end else % 如果节点处于感染态I % 根据恢复概率决定是否变为免疫态R if rand <= gamma state(node, :) = [0 0 1]; % 节点变为免疫态R end end end % 显示当前时间步的节点状态 disp(['Node states at time step ', num2str(t), ':']); disp(state); end % 关键节点检测 critical_nodes = find(state(:, 2) == 1); % 感染态节点即为关键节点 num_critical_nodes = length(critical_nodes); % 输出关键节点 disp(['Critical nodes: ', num2str(critical_nodes')]); disp(['Number of critical nodes: ', num2str(num_critical_nodes)]); ``` 这段代码首先通过随机生成坐标位置来模拟100个节点在二维平面上的随机分布。然后,使用SIR模型模拟感染传播的过程,并在可视化窗口中展示节点的状态变化。在每个时间步中,根据感染概率和恢复概率更新节点的状态。最后,通过找到感染态的节点来检测关键节点,并输出结果。 请注意,这只是一个简单的示例代码,用于展示SIR模型在无线传感器网络中进行关键节点检测的过程。在实际应用中,可能需要根据具体情况进行适当的修改和扩展。

相关推荐

最新推荐

recommend-type

一种基于遗传算法的无线传感器网络覆盖模型

在无线传感器网络中,传感器节点的分布通常具有随机性和密集性,监测区域会出现覆盖盲区或者覆盖重叠。为此,推导出了无线传感器最优覆盖模型计算最少节点个数的公式,对遗传算法中的适应度函数公式做了改进,将多重...
recommend-type

2020 年TI 杯大学生电子设计竞赛 无线运动传感器节点设计(A 题

无线运动传感器节点设计(A 题)基于 TI 模拟前端芯片 ADS1292 和温度传感器 LMT70 设计制作无线运动传 感器节点,节点采用电池供电,要求能稳定采集和记录使用者的心电信息、体表 温度和运动信息。
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

无线传感器网络DV-Hop定位改进算法

提出了一种改进的DV-Hop 定位算法, 通过对DV-Hop算法的局部优化, 减小了定位计算量, 并使得改进的DV-Hop算法对不规则形状的节点分布网络具有较强的适应性, 克服了原算法只适用于各向同性网络的不足。仿真结果...
recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。